- PCA is widely used for dimensionality reduction. In MATLAB, you can use the built-in pca function. Suppose your MFCC features are stored in a matrix called mfccFeatures, where each row corresponds to an audio sample and each column to an MFCC coefficient.
- WPCA is a variant of PCA where each sample can be assigned a weight, which is useful if you want certain samples to have more influence on the resulting components. While MATLAB does not have a built-in wpca function, you can implement it by weighting your centered data before applying PCA.
PCA and WPCA for dimentionality reduction after Feature Extraction in speaker recognition system
2 views (last 30 days)
Show older comments
hi all,
i want to use dimentionality reduction after feature extraction (MFCC) using PCA and WPCA. can some one give me the code for both
help is appreciated
-Shaikha
0 Comments
Answers (1)
Aditya
on 22 Jul 2025
Hi Shaikha,
After extracting MFCC features, it's common to apply dimensionality reduction techniques such as PCA (Principal Component Analysis) and WPCA (Weighted Principal Component Analysis) to reduce the feature space and possibly improve classification or clustering performance.
Documentation link : https://in.mathworks.com/help/stats/pca.html?requestedDomain=
0 Comments
See Also
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!