How to make a new matrix with all common arrays from different matrices
1 view (last 30 days)
Show older comments
Suppose I have some matrices as follow:
m1 = [1;2;3;4;5;6;7;8];
m2 = [2;3;4;6;7;8;9;10;11;12];
m3 = [4;5;6;7;8;9;1;;16];
m4 = [8;8;5;4;3;1;6;7];
I need a matrix which is included all common arrays in all matrices, such as:
m = [4;6;7;8];
0 Comments
Answers (3)
Azzi Abdelmalek
on 11 Nov 2014
Edited: Azzi Abdelmalek
on 11 Nov 2014
m1 = [1;2;3;4;5;6;7;8];
m2 = [2;3;4;6;7;8;9;10;11;12];
m3 = [4;5;6;7;8;9;1;;16];
m4 = [8;8;5;4;3;1;6;7];
a=intersect(m1,m2)
b=intersect(m3,m4)
out=intersect(a,b)
4 Comments
Azzi Abdelmalek
on 12 Nov 2014
Sorry
m1 = [1;2;3;4;5;6;7;8];
m2 = [2;3;4;6;7;8;9;10;11;12];
m3 = [4;5;6;7;8;9;1;;16];
m4 = [8;8;5;4;3;1;6;7];
m={m1,m2,m3,m4}
a=m{1}
for k=2:numel(m)
a=intersect(a,m{k})
end
Star Strider
on 11 Nov 2014
Edited: Star Strider
on 12 Nov 2014
I don’t know why you have to use a cell array, but then I’m only slightly familiar with what you’re doing.
Using eval is not considered good programming style, but this code may work for you. (It does do what you want.) You can make ‘M’ a cell array if you like, but keeping it numeric might be better:
m1 = [1;2;3;4;5;6;7;8];
m2 = [2;3;4;6;7;8;9;10;11;12];
m3 = [4;5;6;7;8;9;1;;16];
m4 = [8;8;5;4;3;1;6;7];
n = 4;
M = m1;
for k1 = 2:n
M = intersect(M,eval(['m' num2str(k1)]));
end
See if it works for you.
6 Comments
Star Strider
on 12 Nov 2014
My pleasure!
I’m not certain that I understand exactly what you’re doing, but if you’re naming your vectors ‘m1’...‘m4’, use the code in my original answer (the eval loop) will sort them and take their intersections automatically.
You can wrap them in a function:
function M = vctintsct(m1,m2,m3,m4)
n = 4;
M = m1;
for k1 = 2:n
M = intersect(M,eval(['m' num2str(k1)]));
end
end
This works if you always have four vectors (you can name them anything in this instance, since the function will name them ‘m1’ etc.), then simply call the function as:
M = vctintsct(m1,m2,m3,m4);
and get ‘M’ as the output. It is a double-precision vector, but you can then assign it as an element of a cell array in your main script. If you have varying numbers of vectors, the function gets a bit more complicated but will still work.
Andrei Bobrov
on 12 Nov 2014
Edited: Andrei Bobrov
on 12 Nov 2014
m1 = [1;2;3;4;5;6;7;8];
m2 = [2;3;4;6;7;8;9;10;11;12];
m3 = [4;5;6;7;8;9;1;;16];
m4 = [8;8;5;4;3;1;6;7];
MM = {m1,m2,m3,m4};
z = cat(1,MM{:});
[a,~,c] = unique(z);
nn = cellfun(@numel,MM);
ii = accumarray(cumsum([1,nn])',1);% Idea by Roger Stafford
ii = cumsum(ii(1:end-1)); %
out = a(all(accumarray([c,ii],1),2));
0 Comments
See Also
Categories
Find more on Multidimensional Arrays in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!