Product of vector elements where the vector has a large size

3 views (last 30 days)
I want to find the nth root of a product for all elements of a vector V having a large size (1064 elements) given as follows.
However, it gives me the answer Inf. Is there any alternative way in matlab to calculate the nth root of the product, where n=length(V)? Thanks.
clear
V = [64 64 256 64 64 64 64 64 256 256 4 4 4 16 16 4 4 4 16 16 64 16 16 16 4 4 16 4 4 16 16 4 16 4 4 16 4 4 4 16 16 64 64 0.250000000000000 0.250000000000000 1 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 1 1 4 4 4 16 16 4 4 4 4 4 16 4 4 4 4 4 4 4 4 4 4 4 16 4 4 16 4 4 4 4 4 16 16 64 64 64 256 256 4 4 4 16 16 4 16 4 16 64 64 0.250000000000000 0.250000000000000 0.250000000000000 1 1 4 4 4 4 4 4 16 4 4 16 16 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 64 64 256 64 64 256 4 16 4 16 64 4 4 4 16 16 64 0.250000000000000 1 0.250000000000000 0.250000000000000 1 4 16 4 4 16 4 4 4 4 4 16 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 64 64 4 4 16 4 4 4 4 4 16 16 4 4 4 16 16 4 4 4 16 16 64 4 16 4 4 16 4 4 4 16 16 64 64 64 64 256 64 64 256 256 64 256 256 64 128 128 512 64 64 128 64 64 128 128 64 256 256 64 128 128 512 512 4 4 4 16 16 4 16 4 16 64 64 4 16 16 4 8 8 8 8 32 32 4 4 4 8 8 4 16 4 8 32 32 128 8 8 8 4 4 8 4 4 8 8 4 4 4 16 16 4 4 4 8 8 32 4 4 4 16 16 4 4 4 8 8 32 32 4 16 4 4 16 4 16 4 16 64 64 4 16 16 16 16 64 4 8 8 32 4 4 4 8 8 4 16 4 8 32 32 128 128 4 4 16 4 4 4 4 4 16 16 4 4 4 16 16 4 4 4 4 4 16 4 16 4 4 16 4 4 4 4 4 16 16 0.250000000000000 0.250000000000000 1 0.250000000000000 0.250000000000000 1 1 0.250000000000000 1 1 0.250000000000000 0.500000000000000 0.500000000000000 2 0.250000000000000 0.250000000000000 0.500000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 0.250000000000000 1 1 0.250000000000000 0.500000000000000 0.500000000000000 2 2 4 4 4 16 16 4 16 4 4 16 16 4 16 16 4 8 8 8 8 32 32 4 4 4 8 8 4 4 4 8 8 8 32 8 8 8 4 4 8 4 4 8 8 4 4 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 8 8 8 8 4 16 4 4 16 4 16 4 4 16 16 4 16 16 16 16 64 4 8 8 32 4 4 4 8 8 4 4 4 8 8 8 32 32 64 64 64 256 256 4 4 4 16 16 4 16 4 16 64 64 0.250000000000000 0.250000000000000 0.250000000000000 1 1 4 4 4 4 4 4 16 4 4 16 16 64 256 4 16 64 0.250000000000000 1 4 4 16 64 16 0.250000000000000 4 16 64 64 4 4 4 16 16 4 16 4 16 64 64 64 256 256 64 128 128 128 128 512 512 4 4 4 8 8 4 16 4 8 32 32 4 16 64 16 16 64 4 8 32 128 128 4 4 4 16 16 4 16 4 4 16 16 0.250000000000000 1 1 0.250000000000000 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000 2 2 4 4 4 8 8 4 4 4 8 8 8 4 16 16 16 16 64 4 8 8 32 32 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 64 16 0.250000000000000 4 16 4 16 64 128 32 4 4 0.250000000000000 0.500000000000000 8 32 32 128 8 8 8 4 4 16 4 4 16 16 64 64 64 64 64 128 64 64 128 128 4 4 4 16 16 4 4 4 8 8 32 4 4 4 16 16 4 4 4 8 8 32 32 8 8 8 4 4 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 8 8 8 8 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 32 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 32 32 64 256 64 64 256 4 16 4 16 64 4 4 4 16 16 64 0.250000000000000 1 0.250000000000000 0.250000000000000 1 4 16 4 4 16 4 4 4 4 4 16 64 256 4 16 64 0.250000000000000 1 4 4 16 64 16 0.250000000000000 4 16 64 64 4 16 4 4 16 4 16 4 16 64 64 64 256 256 256 256 1024 64 128 128 512 4 16 64 16 16 64 4 8 32 128 4 4 4 8 8 4 16 4 8 32 32 128 4 16 4 4 16 4 16 4 4 16 16 0.250000000000000 1 1 1 1 4 0.250000000000000 0.500000000000000 0.500000000000000 2 4 16 16 16 16 64 4 8 8 32 4 4 4 8 8 4 4 4 8 8 8 32 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 64 16 0.250000000000000 4 16 4 16 64 128 32 4 4 0.250000000000000 0.500000000000000 8 32 32 128];
length(V)
ans = 1064
nthroot(prod(V),length(V))
ans = Inf
Moreover, the following code fails to provide a number different from "Inf".
clear
V = [64 64 256 64 64 64 64 64 256 256 4 4 4 16 16 4 4 4 16 16 64 16 16 16 4 4 16 4 4 16 16 4 16 4 4 16 4 4 4 16 16 64 64 0.250000000000000 0.250000000000000 1 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 1 1 4 4 4 16 16 4 4 4 4 4 16 4 4 4 4 4 4 4 4 4 4 4 16 4 4 16 4 4 4 4 4 16 16 64 64 64 256 256 4 4 4 16 16 4 16 4 16 64 64 0.250000000000000 0.250000000000000 0.250000000000000 1 1 4 4 4 4 4 4 16 4 4 16 16 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 64 64 256 64 64 256 4 16 4 16 64 4 4 4 16 16 64 0.250000000000000 1 0.250000000000000 0.250000000000000 1 4 16 4 4 16 4 4 4 4 4 16 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 64 64 4 4 16 4 4 4 4 4 16 16 4 4 4 16 16 4 4 4 16 16 64 4 16 4 4 16 4 4 4 16 16 64 64 64 64 256 64 64 256 256 64 256 256 64 128 128 512 64 64 128 64 64 128 128 64 256 256 64 128 128 512 512 4 4 4 16 16 4 16 4 16 64 64 4 16 16 4 8 8 8 8 32 32 4 4 4 8 8 4 16 4 8 32 32 128 8 8 8 4 4 8 4 4 8 8 4 4 4 16 16 4 4 4 8 8 32 4 4 4 16 16 4 4 4 8 8 32 32 4 16 4 4 16 4 16 4 16 64 64 4 16 16 16 16 64 4 8 8 32 4 4 4 8 8 4 16 4 8 32 32 128 128 4 4 16 4 4 4 4 4 16 16 4 4 4 16 16 4 4 4 4 4 16 4 16 4 4 16 4 4 4 4 4 16 16 0.250000000000000 0.250000000000000 1 0.250000000000000 0.250000000000000 1 1 0.250000000000000 1 1 0.250000000000000 0.500000000000000 0.500000000000000 2 0.250000000000000 0.250000000000000 0.500000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 0.250000000000000 1 1 0.250000000000000 0.500000000000000 0.500000000000000 2 2 4 4 4 16 16 4 16 4 4 16 16 4 16 16 4 8 8 8 8 32 32 4 4 4 8 8 4 4 4 8 8 8 32 8 8 8 4 4 8 4 4 8 8 4 4 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 8 8 8 8 4 16 4 4 16 4 16 4 4 16 16 4 16 16 16 16 64 4 8 8 32 4 4 4 8 8 4 4 4 8 8 8 32 32 64 64 64 256 256 4 4 4 16 16 4 16 4 16 64 64 0.250000000000000 0.250000000000000 0.250000000000000 1 1 4 4 4 4 4 4 16 4 4 16 16 64 256 4 16 64 0.250000000000000 1 4 4 16 64 16 0.250000000000000 4 16 64 64 4 4 4 16 16 4 16 4 16 64 64 64 256 256 64 128 128 128 128 512 512 4 4 4 8 8 4 16 4 8 32 32 4 16 64 16 16 64 4 8 32 128 128 4 4 4 16 16 4 16 4 4 16 16 0.250000000000000 1 1 0.250000000000000 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000 2 2 4 4 4 8 8 4 4 4 8 8 8 4 16 16 16 16 64 4 8 8 32 32 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 64 16 0.250000000000000 4 16 4 16 64 128 32 4 4 0.250000000000000 0.500000000000000 8 32 32 128 8 8 8 4 4 16 4 4 16 16 64 64 64 64 64 128 64 64 128 128 4 4 4 16 16 4 4 4 8 8 32 4 4 4 16 16 4 4 4 8 8 32 32 8 8 8 4 4 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 8 8 8 8 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 32 64 64 4 16 16 0.250000000000000 0.250000000000000 4 4 4 64 16 0.250000000000000 4 16 16 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 32 32 64 256 64 64 256 4 16 4 16 64 4 4 4 16 16 64 0.250000000000000 1 0.250000000000000 0.250000000000000 1 4 16 4 4 16 4 4 4 4 4 16 64 256 4 16 64 0.250000000000000 1 4 4 16 64 16 0.250000000000000 4 16 64 64 4 16 4 4 16 4 16 4 16 64 64 64 256 256 256 256 1024 64 128 128 512 4 16 64 16 16 64 4 8 32 128 4 4 4 8 8 4 16 4 8 32 32 128 4 16 4 4 16 4 16 4 4 16 16 0.250000000000000 1 1 1 1 4 0.250000000000000 0.500000000000000 0.500000000000000 2 4 16 16 16 16 64 4 8 8 32 4 4 4 8 8 4 4 4 8 8 8 32 4 4 4 16 16 64 64 64 128 128 4 16 4 8 32 32 4 4 4 4 4 0.250000000000000 0.250000000000000 0.250000000000000 0.500000000000000 0.500000000000000 4 4 4 8 8 8 64 16 0.250000000000000 4 16 4 16 64 128 32 4 4 0.250000000000000 0.500000000000000 8 32 32 128];
Product_V=1;
for i=1:length(V)
Product_V = Product_V.*V(i); % product of V's elements
end
length(V)
ans = 1064
Product_V
Product_V = Inf
nthroot( Product_V,length(V))
ans = Inf

Accepted Answer

Torsten
Torsten on 5 Jan 2022
Edited: Torsten on 5 Jan 2022
Product_V = exp(sum(log(V(1,:)))/numel(V))

More Answers (0)

Categories

Find more on Exponents and Logarithms in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!