Deep Learning Custom Layer learning parameters update
2 views (last 30 days)
Show older comments
Mathieu Chêne
on 12 Jan 2022
Commented: Mathieu Chêne
on 14 Jan 2022
Hello,
I am working on a deep Learning project In which I try to classify data from a csv. I tryed to use a custom layer but when I train the network my Loss Function seems "constant" as if the weight is not updated.
Do you know what could be the reason of this behavior ?
I am sure of my dataset because when I use a fullyConnected Layer instead of my custom layer the training works perfectly and the testing gives me 100% accuracy.
I also give you the predict and the backward function from my custom layer where Weight is a learning parameter:
function Z = predict(layer, X)
% Z = predict(layer, X1, ..., Xn) forwards the input data X1,
% ..., Xn through the layer and outputs the result Z.
W = layer.Weights;
numel=size(X,2);
% Initialize output
Z = zeros(layer.OutputSize,numel,"single");
% Weighted addition
for k=1:numel
for j=1:layer.OutputSize
for i = 1:layer.InputSize
Z(j,k) = Z(j,k) + W(j,i)*X(i,k);
end
end
end
end
function [dLdX,dLdWeight]=backward(layer,X,~,dLdZ,~)
%Initialization
W=layer.Weights;
dLdWeight=zeros(size(W),"single");
dLdX=zeros(size(X),"single");
%Backward operation
for k=1:size(X,2)
for j=1:layer.OutputSize
for i=1:layer.InputSize
dLdWeight(j,i)=dLdWeight(j,i)+X(i,k)*dLdZ(j,k);
dLdX(i,k)=dLdX(i,k)+W(j,i)*dLdZ(j,k);
end
end
end
end
Thank you in advance for your futur help.
Mathieu
0 Comments
Accepted Answer
More Answers (0)
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!