find the minimum objective for a given ode as boundary value problem
2 views (last 30 days)
Show older comments
Hello Community,
could you give me hint how to tackle this problem.
I have an ode (c has a positive value):
dxdt2 = a+b*t - c*dxdt^2;
with this boundary conditions:
t(0) = t0;
x(0) = x0;
dxdt(0) = v0;
x(end) = xEnd;
dxdt(end) = vEnd;
dxdt2(end) = 0;
and with these unkowns:
t(end)
a is positive;
b is either positive or negative
also the objective funktion an energy metric have to be minimzed:
E = Integral of c*dxdt^2 from t0 to tEnd
So at first i have to define the ode-function and the objective-function.
But do i need the bvp solver and the fmincon-solver?
Thank you in advance.
4 Comments
Accepted Answer
Alan Weiss
on 17 Jan 2022
For examples of optimizing a function given as the solution to an ODE, see Fit ODE, Problem-Based and Fit an Ordinary Differential Equation (ODE). These examples minimize a sum of squared difference between a given curve and the ODE solution, but the techniques apply to your problem as well. For more information, see Optimizing a Simulation or Ordinary Differential Equation.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
0 Comments
More Answers (1)
Torsten
on 17 Jan 2022
Edited: Torsten
on 17 Jan 2022
Vector of unknowns for fmincon:
(y1,y2,y3,y4)=(a,b,c,tend)
Objective for fmincon:
f(a,b,c,tend) = integral_{t=0}^{tend} c*(dx/dt)^2
Can be obtained by solving with ODE45
z' = c*x2^2 , z(0) = 0
x1' = x2 , x1(0) = x0
x2' = a+b*t-c*x2^2, x2(0) = v0
in [0 tend]
z(end) is the value to be returned
Constraints (to be supplied in nlcon):
ceq(1) = x2(end) - vend == 0
ceq(2) = a+b*tend-c*x2(end)^2 == 0
x2(end) can be obtained by solving with ODE45
x1' = x2 , x1(0) = x0
x2' = a+b*t-c*x2^2, x2(0) = v0
in [0 tend]
Upper and lower bounds:
a >= 0
tend >= 0 ?
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!