Why the if statement does not work when I am trying to avoid the singularity in my code ??
1 view (last 30 days)
Show older comments
function RunlogisticOscilnumericalfisherfixedn0omega
omega=1;
N0=1;
k = 10;
A = 1;
p0 = 0.1;
tspan=(0:0.1:4);
[t,p] = ode45(@logisticOscilnumerical,tspan,p0,[],omega,k,N0);
P = @(T) interp1(t,p,T);
f = @(t) ( ( A.*( ( N0.* (sin(omega.*t)).^2 .*(1-(2.*P(t)./k))+(omega.*cos(omega.*t) ) ).^2 ) ./( (N0.^2).*((sin(omega.*t)).^4).*((P(t)-(P(t).^2./k)).^2 )) ) ) ;
v = ( (N0.^2).*((sin(omega.*t)).^4).*((P(t)-(P(t).^2./k)).^2 )); if v <= 1e-100
f = 0
else
f = I4
end
I1 = integral( f, 0.01,1,'ArrayValued',true)./1
I2 = integral( f, 0.01,2,'ArrayValued',true)./2
I3 = integral( f, 0.01,3,'ArrayValued',true)./3
I4 = integral( f, 0.01,4,'ArrayValued',true)./4
I=[I1,I2,I3,I4] ;
T=[1,2,3,4] ;
figure(2)
plot(T,I)
g = @(t) ( ( A.*( ( N0.* (sin(omega.*t)).^2 .*(1-(2.*P(t)./k))+(omega.*cos(omega.*t) ) ).^2 ) ./( (N0.^2).*((sin(omega.*t)).^4).*((P(t)-(P(t).^2./k)).^2 )) ) ) ;
figure(3)
plot(tspan,g(tspan))
1;
% function dpdt = logisticOscilnumerical(t,p,omega,k,N0)
% dpdt = N0*sin(omega*t)*p*(1-p/k);
% end
Could anyone help me to avoid singularity at x = 3.14159 using if statement please??
5 Comments
Torsten
on 28 Nov 2014
The values of a function at a finite number of points do not influence the integral.
Changing the function in a neighborhood of the singularities will give you a finite value for the integrals, but this finite value will depend on the size of the neighborhood you chose.
So I think it is better to reconsider how you came up with the function f and if this f is appropriate for your purpose.
Best wishes
Torsten.
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!