Having problem with a infinite double sum
9 views (last 30 days)
Show older comments
I'm having a problem trying to code this infine double sum
A, b, x, y and q0 are known values. My problem is specificaly tryind to transform that double sum in a code.
3 Comments
Accepted Answer
Walter Roberson
on 5 Apr 2022
Edited: Walter Roberson
on 5 Apr 2022
You might be able to simplify the output if you can put constraints on the values.
This takes a while... It might possibly take less time with specific numeric values.
With specific numeric values for everything you could potentially use vpasum()
syms a b M N m n q0 x y nu
Pi = sym(pi);
inner = ((m^2/a^2) + nu*(n^2/b^2)) / (m*n*((m^2/a^2) + (n^2/b^2))^2) * sin(m*Pi*x/a) * sin(n*pi*y/b)
innerMN = subs(inner, {m, n}, {2*M-1, 2*N-1})
M_x = 16*q0/Pi^4 * symsum( symsum(innerMN, N, 1, inf), M, 1, inf)
4 Comments
Walter Roberson
on 5 Apr 2022
Yes, my code does try to find the symbolic expression for the double sum. In practice, after thinking a fair while, it returns
(16*q0*symsum((sin((x*pi*(2*M - 1))/a)*symsum((sin((y*pi*(2*N - 1))/b)*((2*M - 1)^2/a^2 + (nu*(2*N - 1)^2)/b^2))/((2*N - 1)*((2*M - 1)^2/a^2 + (2*N - 1)^2/b^2)^2), N, 1, Inf))/(2*M - 1), M, 1, Inf))/pi^4
At the moment I do not know if it would be able to get further if it were given specific numeric values for the constants.
vpasum() does somehow figure out when to stop; see https://www.mathworks.com/help/symbolic/vpasum.html#mw_bd9ec10e-e8f5-4483-a536-d7e7a3a5ec26
More Answers (1)
Torsten
on 5 Apr 2022
Edited: Torsten
on 5 Apr 2022
You might want to try a numerical solution:
a = 2.0;
b = 4.0;
nu = 20;
q0 = 1.0;
X = linspace(-2*pi,2*pi,250);
Y = linspace(-2*pi,2*pi,500);
eps = 1e-5; % precision of series evaluation
tic
for i = 1:numel(X)
for j = 1:numel(Y)
Z(j,i) = func(a,b,nu,q0,X(i),Y(j),eps);
end
i
end
toc
[XX,YY] = meshgrid(X,Y) ;
surf(XX,YY,Z)
function fvalue = func(a,b,nu,q0,x,y,eps)
total_sum = 0.0;
diagonal_sum = 1.0;
i = 1;
if abs(nu) >= 1
while abs(diagonal_sum) > eps
J = 1:i;
diagonal_sum = sum((((2*J-1)/a).^2/nu + ((2*(i-J)-1)/b).^2)./...
((2*J-1).*(2*(i-J)-1).*(((2*J-1)/a).^2 +...
((2*(i-J)-1)/b).^2).^2) .*...
sin((2*J-1)*pi*x/a).*sin((2*(i-J)-1)*pi*y/b));
total_sum = total_sum + diagonal_sum;
i = i + 1;
end
total_sum = nu*total_sum;
else
while abs(diagonal_sum) > eps
J = 1:i;
diagonal_sum = sum((((2*J-1)/a).^2 + nu*((2*(i-J)-1)/b).^2)./...
((2*J-1).*(2*(i-J)-1).*(((2*J-1)/a).^2 +...
((2*(i-J)-1)/b).^2).^2) .*...
sin((2*J-1)*pi*x/a).*sin((2*(i-J)-1)*pi*y/b));
total_sum = total_sum + diagonal_sum;
i = i + 1;
end
end
fvalue = 16*q0/pi^4*total_sum;
end
0 Comments
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!