How to solve this differential equation inside derivation are there

1 view (last 30 days)
function kk1
a0=10; r0=70;
%main function to solve
[t,r]=ode45(@fn,[0 1200],[0.01 0.01 0.01 0.01 0.01 0.01])
plot(r(:,1),r(:,3))
function dr = fn(t,r)
% relation with actual variables
x=r(1);y=r(2); z=r(3);px=r(4);py=r(5); pz=r(6);
ta = 200;
zr=r0^2/2;
rho=sqrt((x^2+y^2)/r0^2);
eps=r0/zr;
R=z* (1+ (r0^2/(2* z))^2);
f=sqrt(1+(2*z/r0^2)^2);
l=1;
fr=(a0/f)*(sqrt(2)*rho/f)^l*exp(-rho^2/f^2)*exp(-((t-z)/ta)^2);
ph=(t-z)+2*atan(2*(z)/r0^2)-(x^2+y^2)/(2* R));
ax1=fr*cos(ph);
ay1=0;
az1=-d/dx(ax1);
bx1=0;
by1=ax1;
bz1=- d/dy(ax1);
g=sqrt(1+px^2+py^2+pz^2);
dr=zeros(6,1);
dr(1)=px/g; dr(2)=py/g; dr(3)=pz/g;
dr(4)=-ax1*(1 - pz/g)-py/g* bz1;
dr(5)=-ay1+pz/g* ay1+px/g* bz1;
dr(6)=-az1-px/g* ax1-py/g *ay1;
end
end
here bz1=is the partial derivation w r to y of ax1 similar az1 is the partial diff w r to x with in the equation so how to solve this problem

Answers (1)

Torsten
Torsten on 8 May 2022
Edited: Torsten on 8 May 2022
Execute this code separately and copy the expressions obtained for az1 and bz1 into your code from above.
If you want more variability, also declare a0, r0, l and ta as syms. You'll get an expression for az1 and bz1 depending on t,x,y,z,a0,r0,l and ta. Make az1 and bz1 functions like
function value = AZ1(t,x,y,z,a0,r0,l,ta)
value = (expression obtained from the below code)
end
function value = BZ1(t,x,y,z,a0,r0,l,ta)
value = (expression obtained from the below code)
end
and call them in your code as
az1 = AZ1(t,x,y,z,a0,r0,l,ta)
bz1 = BZ1(t,x,y,z,a0,r0,l,ta)
syms t x y z
a0=10;
r0=70;
R=z* (1+ (r0^2/(2* z))^2);
zr=r0^2/2;
eps=r0/zr;
rho=sqrt((x^2+y^2)/r0^2);
f=sqrt(1+(2*z/r0^2)^2);
ph=(t-z)+2*atan(2*(z)/r0^2)-(x^2+y^2)/(2* R);
l=1;
ta = 200;
fr=(a0/f)*(sqrt(2)*rho/f)^l*exp(-rho^2/f^2)*exp(-((t-z)/ta)^2);
ax1=fr*cos(ph);
az1 = -diff(ax1,x)
bz1 = -diff(ax1,y)
%az1 = simplify(az1)
%bz1 = simplify(bz1)
az1 = matlabFunction(az1)
bz1 = matlabFunction(bz1)

Categories

Find more on Mathematics in Help Center and File Exchange

Tags

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!