2nd order differential equations

21 views (last 30 days)
Patrick Nowohradsky
Patrick Nowohradsky on 10 Jun 2022
Commented: Ganesh Gudipati on 15 Jun 2022
For a Project I got to solve these Lagrange equations!
sdolve does not work
I tried formulating 2 equations of first order instead of one equation of second order, but this does not work either. Because there is no explicit solution. Start values would be: phi(0)==0.9424, phi_dot(0)==0
any ideas?
clear
Parameter
m= 100;
c= 3588;
g= 9.81;
syms phi(t) m c g
alpha=sin((1.7-2.1*cos(phi(t)))/3.6);
r1=((-2.1*sin(phi(t))+1.8*cos(alpha))^2+(2.1*cos(phi(t))+1.8*sin(alpha))^2)^0.5;
r1_d=diff(r1);
alpha_d=diff(alpha);
Energie
U=1/2*c*(1.8^2+0.6^2-2*1.8*0.6*cos(phi(t)));
W=m*g*(2.1*cos(phi(t))+1.8*sin(alpha));
V=U+W
T_trans=0.5*m*r1_d^2;
T_rot=1/3*m*3.6^2*alpha_d^2;
T=T_trans+T_rot
Lagrange
T_dv=diff(T,diff(phi(t)));
L_1=diff(T_dv,t);
L_2=diff(T,phi(t));
L_3=diff(V,phi(t));
F=L_1-L_2+L_3
F_s=simplify(F)
F_ss=solve(F_s,diff(phi(t), t, 2))
  3 Comments
Patrick Nowohradsky
Patrick Nowohradsky on 10 Jun 2022
Edited: Patrick Nowohradsky on 10 Jun 2022
Like this?
Lagrange
T_dv=diff(T,diff(phi(t)));
L_1=diff(T_dv,t);
L_2=diff(T,phi(t));
L_3=diff(V,phi(t));
F=L_1-L_2+L_3;
F_s=simplify(F)
F_ss=matlabFunction(F_s);
phi0 = 0.9424;
phid0 = 0;
tspan=[0 30];
[t,y]=ode15i(F_ss,tspan,phi0,phid0)
figure
t_t=linspace(0,2*pi);
plot(t, y)
Then I get: Warning: Function 'phi' not verified to be a valid MATLAB function
Ganesh Gudipati
Ganesh Gudipati on 15 Jun 2022
Since you didn't initialize the variable phi, MATLAB would be searching if there exists a function 'phi'.
Firstly, intialize the value of phi and procced. This should resolve your error.

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!