Solve nonlinear 2nd order ODE numerically
1 view (last 30 days)
Show older comments
I need to solve the following nonlinear 2nd order ODE, that is, find such that
I tried using
>> syms y(x)
>> ode = -diff(y,x,2)/(1+(diff(y,x))^2)^(3/2) == 1-x;
>> ySol(x) = dsolve(ode)
but it doesn't work since apparently there is no anaylitical solution (if I rearrange the terms it does find a system of complex solutions, but I think the it is not right).
Isn't there a command to solve ODEs numerically? I am expeting something like the family of plots from here https://www.wolframalpha.com/input?i=f%27%27%28t%29%2F%28%281%2B%28f%27%28t%29%29%5E2%29%5E%283%2F2%29%29+%3D+-%281-0.25t%29
Many thanks oin advance!
2 Comments
Accepted Answer
Sam Chak
on 28 Jul 2022
Hi @Lucas
You can follow the example here
and try something like this:
tspan = [0 1.15];
y0 = [1 0]; % initial condition
[t,y] = ode45(@(t, y) odefcn(t, y), tspan, y0);
plot(t, y(:,1)), grid on, xlabel('t')
function dydt = odefcn(t, y)
dydt = zeros(2,1);
c = 0.25;
dydt(1) = y(2);
dydt(2) = - (1 - c*t)*(1 + y(2)^2)^(3/2);
end
More Answers (2)
MOSLI KARIM
on 12 Aug 2022
function pvb_pr13
tspan=[0 1.5];
y0=[1 0];
[x,y]=ode45(@fct,tspan,y0);
figure(1)
hold on
plot(x,y(:,1),'r-')
grid on
function yp=fct(x,y)
c=0.25;
yp=[y(2);-(1-c*x)*((1+(y(2))^2)^(3/2))];
end
end
1 Comment
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!