How do I iterate f(x)

1 view (last 30 days)
LILIA VERGARA
LILIA VERGARA on 26 Jan 2023
Answered: Alan Weiss on 27 Jan 2023
using x^(0) = 0 and x^(1) = 5 as inital condition
I am trying to iterate f(x) up to 60 iterations or till the estimated relative error is less than 10^-6
note that f(x) = e^x - 2 - x - (x^2 / 2)
The code I have startead with has been giving me errors:
f = @(x)exp(x) - 2 - x - x.^2./2
f = function_handle with value:
@(x)exp(x)-2-x-x.^2./2
x_true = fzero(f,[0.01 0.1],optimset("Display","iter"));
Error using fzero
Function values at the interval endpoints must differ in sign.
  2 Comments
Torsten
Torsten on 26 Jan 2023
What do you mean by
I am trying to iterate f(x) up to 60 iterations or till the estimated relative error is less than 10^-6
?
Walter Roberson
Walter Roberson on 26 Jan 2023
f = @(x)exp(x) - 2 - x - x.^2./2
f = function_handle with value:
@(x)exp(x)-2-x-x.^2./2
fplot(f, [0.01 0.1])
There is no zero of the function within that range.

Sign in to comment.

Answers (1)

Alan Weiss
Alan Weiss on 27 Jan 2023
Is this what you are looking for?
f = @(x)exp(x) - 2 - x - x.^2./2;
t = linspace(0,5);
plot(t,f(t))
OK, there is a root in that interval. Find it.
[x,fval,eflag,output] = fzero(f,[0 5])
x = 1.5681
fval = 2.2204e-16
eflag = 1
output = struct with fields:
intervaliterations: 0 iterations: 11 funcCount: 13 algorithm: 'bisection, interpolation' message: 'Zero found in the interval [0, 5]'
Number of iterations is not too high.
Alan Weiss
MATLAB mathematical toolbox documentation

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!