How to plot non-quadratic functions?

4 views (last 30 days)
Hi everyone,
I have 3 non-quadratic/nonlinear profit functions (see below) in terms of 3 parameters which are alfa, F and delta.
To find for which alfa and F values which profit function is optimum, I need to compare these 3 profit functions and draw a plot based on alfa (x-axis) and F (y-axis) also alfa=F=[0, 1].
Manually I know how to solve it by I couldn't find a way to code it in Matlab.
I would appreciate if anyone can help me. Many thanks in advance!
totalprofit1=(8*F*(delta^3 - 3*delta^2 + 4*delta - 2))/((delta - 2)^2*(8*F*delta - 8*alfa - 4*delta - 12*F + 8*alfa*delta - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 4))
totalprofit2 =((delta - 1)^2*(- alfa^2 + 2*alfa + 4*F - 1)*(alfa^2 - 2*alfa - 4*F + 2*F*delta + 1)^2)/(4*(- 32*F^3*delta^3 + 112*F^3*delta^2 - 128*F^3*delta + 48*F^3 + 8*F^2*alfa^2*delta^3 - 56*F^2*alfa^2*delta^2 + 88*F^2*alfa^2*delta - 40*F^2*alfa^2 + 8*F^2*alfa*delta^4 - 40*F^2*alfa*delta^3 + 136*F^2*alfa*delta^2 - 184*F^2*alfa*delta + 80*F^2*alfa - 8*F^2*delta^4 + 32*F^2*delta^3 - 80*F^2*delta^2 + 96*F^2*delta - 40*F^2 + 6*F*alfa^4*delta^2 - 18*F*alfa^4*delta + 11*F*alfa^4 - 2*F*alfa^3*delta^4 + 12*F*alfa^3*delta^3 - 40*F*alfa^3*delta^2 + 78*F*alfa^3*delta - 44*F*alfa^3 + 5*F*alfa^2*delta^4 - 34*F*alfa^2*delta^3 + 83*F*alfa^2*delta^2 - 126*F*alfa^2*delta + 66*F*alfa^2 - 4*F*alfa*delta^4 + 32*F*alfa*delta^3 - 70*F*alfa*delta^2 + 90*F*alfa*delta - 44*F*alfa + F*delta^4 - 10*F*delta^3 + 21*F*delta^2 - 24*F*delta + 11*F + alfa^6*delta - alfa^6 - alfa^5*delta^3 + 2*alfa^5*delta^2 - 7*alfa^5*delta + 6*alfa^5 + 5*alfa^4*delta^3 - 10*alfa^4*delta^2 + 20*alfa^4*delta - 15*alfa^4 - 10*alfa^3*delta^3 + 20*alfa^3*delta^2 - 30*alfa^3*delta + 20*alfa^3 + 10*alfa^2*delta^3 - 20*alfa^2*delta^2 + 25*alfa^2*delta - 15*alfa^2 - 5*alfa*delta^3 + 10*alfa*delta^2 - 11*alfa*delta + 6*alfa + delta^3 - 2*delta^2 + 2*delta - 1))
totalprofit3 =-((delta - 2)^2*(2*F^2*delta^5 - 19*F^2*delta^4 + 72*F^2*delta^3 - 136*F^2*delta^2 + 128*F^2*delta - 48*F^2 + F*alfa^2*delta^4 - 10*F*alfa^2*delta^3 + 35*F*alfa^2*delta^2 - 52*F*alfa^2*delta + 28*F*alfa^2 - 2*F*alfa*delta^4 + 20*F*alfa*delta^3 - 70*F*alfa*delta^2 + 104*F*alfa*delta - 56*F*alfa + F*delta^4 - 14*F*delta^3 + 57*F*delta^2 - 92*F*delta + 52*F - alfa^4*delta^2 + 4*alfa^4*delta - 4*alfa^4 + 4*alfa^3*delta^2 - 16*alfa^3*delta + 16*alfa^3 - 6*alfa^2*delta^2 + 28*alfa^2*delta - 30*alfa^2 + 4*alfa*delta^2 - 24*alfa*delta + 28*alfa - delta^2 + 10*delta - 13))/(4*(20*F*delta - 8*alfa - 6*delta - 12*F + 8*alfa*delta - 11*F*delta^2 + 2*F*delta^3 - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 7)^2)

Accepted Answer

Torsten
Torsten on 30 Jan 2023
Edited: Torsten on 30 Jan 2023
I suggest you evaluate the three profit functions for a rectangular region [alpha_min,alpha_max] x [ F_min,F_max] and introduce a third variable profit_max that is 1 if the first profit function is maximum, 2 if the second profit function is maximum and 3 if the third profit function is maximum. Then use "contourf" to plot z in the region [alpha_min,alpha_max] x [ F_min,F_max].
delta = 1;
totalprofit1=@(F,alfa)(8*F*(delta^3 - 3*delta^2 + 4*delta - 2))/((delta - 2)^2*(8*F*delta - 8*alfa - 4*delta - 12*F + 8*alfa*delta - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 4));
totalprofit2 =@(F,alfa)((delta - 1)^2*(- alfa^2 + 2*alfa + 4*F - 1)*(alfa^2 - 2*alfa - 4*F + 2*F*delta + 1)^2)/(4*(- 32*F^3*delta^3 + 112*F^3*delta^2 - 128*F^3*delta + 48*F^3 + 8*F^2*alfa^2*delta^3 - 56*F^2*alfa^2*delta^2 + 88*F^2*alfa^2*delta - 40*F^2*alfa^2 + 8*F^2*alfa*delta^4 - 40*F^2*alfa*delta^3 + 136*F^2*alfa*delta^2 - 184*F^2*alfa*delta + 80*F^2*alfa - 8*F^2*delta^4 + 32*F^2*delta^3 - 80*F^2*delta^2 + 96*F^2*delta - 40*F^2 + 6*F*alfa^4*delta^2 - 18*F*alfa^4*delta + 11*F*alfa^4 - 2*F*alfa^3*delta^4 + 12*F*alfa^3*delta^3 - 40*F*alfa^3*delta^2 + 78*F*alfa^3*delta - 44*F*alfa^3 + 5*F*alfa^2*delta^4 - 34*F*alfa^2*delta^3 + 83*F*alfa^2*delta^2 - 126*F*alfa^2*delta + 66*F*alfa^2 - 4*F*alfa*delta^4 + 32*F*alfa*delta^3 - 70*F*alfa*delta^2 + 90*F*alfa*delta - 44*F*alfa + F*delta^4 - 10*F*delta^3 + 21*F*delta^2 - 24*F*delta + 11*F + alfa^6*delta - alfa^6 - alfa^5*delta^3 + 2*alfa^5*delta^2 - 7*alfa^5*delta + 6*alfa^5 + 5*alfa^4*delta^3 - 10*alfa^4*delta^2 + 20*alfa^4*delta - 15*alfa^4 - 10*alfa^3*delta^3 + 20*alfa^3*delta^2 - 30*alfa^3*delta + 20*alfa^3 + 10*alfa^2*delta^3 - 20*alfa^2*delta^2 + 25*alfa^2*delta - 15*alfa^2 - 5*alfa*delta^3 + 10*alfa*delta^2 - 11*alfa*delta + 6*alfa + delta^3 - 2*delta^2 + 2*delta - 1));
totalprofit3 =@(F,alfa)-((delta - 2)^2*(2*F^2*delta^5 - 19*F^2*delta^4 + 72*F^2*delta^3 - 136*F^2*delta^2 + 128*F^2*delta - 48*F^2 + F*alfa^2*delta^4 - 10*F*alfa^2*delta^3 + 35*F*alfa^2*delta^2 - 52*F*alfa^2*delta + 28*F*alfa^2 - 2*F*alfa*delta^4 + 20*F*alfa*delta^3 - 70*F*alfa*delta^2 + 104*F*alfa*delta - 56*F*alfa + F*delta^4 - 14*F*delta^3 + 57*F*delta^2 - 92*F*delta + 52*F - alfa^4*delta^2 + 4*alfa^4*delta - 4*alfa^4 + 4*alfa^3*delta^2 - 16*alfa^3*delta + 16*alfa^3 - 6*alfa^2*delta^2 + 28*alfa^2*delta - 30*alfa^2 + 4*alfa*delta^2 - 24*alfa*delta + 28*alfa - delta^2 + 10*delta - 13))/(4*(20*F*delta - 8*alfa - 6*delta - 12*F + 8*alfa*delta - 11*F*delta^2 + 2*F*delta^3 - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 7)^2);
n = 100;
alfa = linspace(0,1,n);
F = linspace(0,1,n);
[F,alfa] = meshgrid(F,alfa);
for i=1:n
for j=1:n
f = F(i,j);
a = alfa(i,j);
z1 = totalprofit1(f,a);
z2 = totalprofit2(f,a);
z3 = totalprofit3(f,a);
[~,index] = max([z1,z2,z3]);
profit_max(i,j) = index;
end
end
contourf(F,alfa,profit_max)
colorbar
  4 Comments
Melda Hasiloglu
Melda Hasiloglu on 1 Feb 2023
Hi Torsten,
I add some conditions for each profit function but it doesn't work can you please have a look at?
My aim is: For example, if totalprofit1 is maximum and if it meets the condition 1 then color it blue, if doesn't meet than color it black.
totalprofit1=@(alfa,F)(8*F*(delta^3 - 3*delta^2 + 4*delta - 2))/((delta - 2)^2*(8*F*delta - 8*alfa - 4*delta - 12*F + 8*alfa*delta - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 4));
totalprofit2 =@(alfa,F)((delta - 1)^2*(- alfa^2 + 2*alfa + 4*F - 1)*(alfa^2 - 2*alfa - 4*F + 2*F*delta + 1)^2)/(4*(- 32*F^3*delta^3 + 112*F^3*delta^2 - 128*F^3*delta + 48*F^3 + 8*F^2*alfa^2*delta^3 - 56*F^2*alfa^2*delta^2 + 88*F^2*alfa^2*delta - 40*F^2*alfa^2 + 8*F^2*alfa*delta^4 - 40*F^2*alfa*delta^3 + 136*F^2*alfa*delta^2 - 184*F^2*alfa*delta + 80*F^2*alfa - 8*F^2*delta^4 + 32*F^2*delta^3 - 80*F^2*delta^2 + 96*F^2*delta - 40*F^2 + 6*F*alfa^4*delta^2 - 18*F*alfa^4*delta + 11*F*alfa^4 - 2*F*alfa^3*delta^4 + 12*F*alfa^3*delta^3 - 40*F*alfa^3*delta^2 + 78*F*alfa^3*delta - 44*F*alfa^3 + 5*F*alfa^2*delta^4 - 34*F*alfa^2*delta^3 + 83*F*alfa^2*delta^2 - 126*F*alfa^2*delta + 66*F*alfa^2 - 4*F*alfa*delta^4 + 32*F*alfa*delta^3 - 70*F*alfa*delta^2 + 90*F*alfa*delta - 44*F*alfa + F*delta^4 - 10*F*delta^3 + 21*F*delta^2 - 24*F*delta + 11*F + alfa^6*delta - alfa^6 - alfa^5*delta^3 + 2*alfa^5*delta^2 - 7*alfa^5*delta + 6*alfa^5 + 5*alfa^4*delta^3 - 10*alfa^4*delta^2 + 20*alfa^4*delta - 15*alfa^4 - 10*alfa^3*delta^3 + 20*alfa^3*delta^2 - 30*alfa^3*delta + 20*alfa^3 + 10*alfa^2*delta^3 - 20*alfa^2*delta^2 + 25*alfa^2*delta - 15*alfa^2 - 5*alfa*delta^3 + 10*alfa*delta^2 - 11*alfa*delta + 6*alfa + delta^3 - 2*delta^2 + 2*delta - 1));
totalprofit3 =@(alfa,F)-((delta - 2)^2*(2*F^2*delta^5 - 19*F^2*delta^4 + 72*F^2*delta^3 - 136*F^2*delta^2 + 128*F^2*delta - 48*F^2 + F*alfa^2*delta^4 - 10*F*alfa^2*delta^3 + 35*F*alfa^2*delta^2 - 52*F*alfa^2*delta + 28*F*alfa^2 - 2*F*alfa*delta^4 + 20*F*alfa*delta^3 - 70*F*alfa*delta^2 + 104*F*alfa*delta - 56*F*alfa + F*delta^4 - 14*F*delta^3 + 57*F*delta^2 - 92*F*delta + 52*F - alfa^4*delta^2 + 4*alfa^4*delta - 4*alfa^4 + 4*alfa^3*delta^2 - 16*alfa^3*delta + 16*alfa^3 - 6*alfa^2*delta^2 + 28*alfa^2*delta - 30*alfa^2 + 4*alfa*delta^2 - 24*alfa*delta + 28*alfa - delta^2 + 10*delta - 13))/(4*(20*F*delta - 8*alfa - 6*delta - 12*F + 8*alfa*delta - 11*F*delta^2 + 2*F*delta^3 - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 7)^2);
alfa = 0:0.005:1;
f = 0:0.005:1;
delta=0.8
[Alfa,F] = meshgrid(alfa,f);
[~,idx] = arrayfun(@(Alfa,F)max([totalprofit1(Alfa,F),totalprofit2(Alfa,F),totalprofit3(Alfa,F)]),Alfa,F);
if max([totalprofit1(Alfa,F),totalprofit2(Alfa,F),totalprofit3(Alfa,F)])==totalprofit1(Alfa,F)
%%condition 1
if - (Alfa - 1)^2 - (2*F*(4*delta - 6))/(delta - 2)^2>0 &((Alfa - 1)*(2*N - 4*delta - 4*Alfa*delta + 6))/(delta + Alfa*delta - 2)^2<0 & - (Alfa - 1)^2 - (2*F*(Alfa - 1)*(2*Alfa - 4*delta - 4*Alfa*delta + 6))/(delta + Alfa*delta - 2)^2 >0
contourf(Alfa,F,idx, 'b')
else
contourf(Alfa,F,idx, 'k')
end
end
if max([totalprofit1(Alfa,F),totalprofit2(Alfa,F),totalprofit3(Alfa,F)])==totalprofit2(Alfa,F)
%%condition 2
if 4*F>(1-Alfa)^2 & delta <(0.5*(4.0*F + Alfa - 1.0*(16.0*F^2 - 8.0*F*Alfa + 8.0*F + 4.0*Alfa^3 - 11.0*Alfa^2 + 10.0*Alfa - 3.0)^(1/2) - 1.0))/(Alfa - 1.0) & delta< (1.0*(F*Alfa - 2.0*Alfa - 4.0*F + Alfa^2 + 1.0))/(2.0*F*Alfa - 2.0*Alfa - 4.0*F + Alfa^2 + 1.0)
contourf(Alfa,F,idx, 'g')
else
contourf(Alfa,F,idx, 'k')
end
end
if max([totalprofit1(Alfa,F),totalprofit2(Alfa,F),totalprofit3(Alfa,F)])==totalprofit3(Alfa,F)
%%condition 3
if -(4*(Alfa^2 - 2*Alfa - 3*F + 2*F*delta + 1))/(delta - 2)^2>0 & Alfa <1 & (3*F+F*Alfa-2*F*delta+Alfa*delta^2-delta^2-2*F*Alfa*delta)>0
contourf(Alfa,F,idx, 'b')
else
contourf(Alfa,F,idx, 'k')
end
end
colorbar
Torsten
Torsten on 1 Feb 2023
Edited: Torsten on 1 Feb 2023
Maybe you can even choose the color for a certain value of Fun. Ad hoc, I can't.
Don't forget to set N to the correct value.
delta=0.8;
N = 1;
totalprofit1=@(alfa,F)(8*F*(delta^3 - 3*delta^2 + 4*delta - 2))/((delta - 2)^2*(8*F*delta - 8*alfa - 4*delta - 12*F + 8*alfa*delta - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 4));
totalprofit2 =@(alfa,F)((delta - 1)^2*(- alfa^2 + 2*alfa + 4*F - 1)*(alfa^2 - 2*alfa - 4*F + 2*F*delta + 1)^2)/(4*(- 32*F^3*delta^3 + 112*F^3*delta^2 - 128*F^3*delta + 48*F^3 + 8*F^2*alfa^2*delta^3 - 56*F^2*alfa^2*delta^2 + 88*F^2*alfa^2*delta - 40*F^2*alfa^2 + 8*F^2*alfa*delta^4 - 40*F^2*alfa*delta^3 + 136*F^2*alfa*delta^2 - 184*F^2*alfa*delta + 80*F^2*alfa - 8*F^2*delta^4 + 32*F^2*delta^3 - 80*F^2*delta^2 + 96*F^2*delta - 40*F^2 + 6*F*alfa^4*delta^2 - 18*F*alfa^4*delta + 11*F*alfa^4 - 2*F*alfa^3*delta^4 + 12*F*alfa^3*delta^3 - 40*F*alfa^3*delta^2 + 78*F*alfa^3*delta - 44*F*alfa^3 + 5*F*alfa^2*delta^4 - 34*F*alfa^2*delta^3 + 83*F*alfa^2*delta^2 - 126*F*alfa^2*delta + 66*F*alfa^2 - 4*F*alfa*delta^4 + 32*F*alfa*delta^3 - 70*F*alfa*delta^2 + 90*F*alfa*delta - 44*F*alfa + F*delta^4 - 10*F*delta^3 + 21*F*delta^2 - 24*F*delta + 11*F + alfa^6*delta - alfa^6 - alfa^5*delta^3 + 2*alfa^5*delta^2 - 7*alfa^5*delta + 6*alfa^5 + 5*alfa^4*delta^3 - 10*alfa^4*delta^2 + 20*alfa^4*delta - 15*alfa^4 - 10*alfa^3*delta^3 + 20*alfa^3*delta^2 - 30*alfa^3*delta + 20*alfa^3 + 10*alfa^2*delta^3 - 20*alfa^2*delta^2 + 25*alfa^2*delta - 15*alfa^2 - 5*alfa*delta^3 + 10*alfa*delta^2 - 11*alfa*delta + 6*alfa + delta^3 - 2*delta^2 + 2*delta - 1));
totalprofit3 =@(alfa,F)-((delta - 2)^2*(2*F^2*delta^5 - 19*F^2*delta^4 + 72*F^2*delta^3 - 136*F^2*delta^2 + 128*F^2*delta - 48*F^2 + F*alfa^2*delta^4 - 10*F*alfa^2*delta^3 + 35*F*alfa^2*delta^2 - 52*F*alfa^2*delta + 28*F*alfa^2 - 2*F*alfa*delta^4 + 20*F*alfa*delta^3 - 70*F*alfa*delta^2 + 104*F*alfa*delta - 56*F*alfa + F*delta^4 - 14*F*delta^3 + 57*F*delta^2 - 92*F*delta + 52*F - alfa^4*delta^2 + 4*alfa^4*delta - 4*alfa^4 + 4*alfa^3*delta^2 - 16*alfa^3*delta + 16*alfa^3 - 6*alfa^2*delta^2 + 28*alfa^2*delta - 30*alfa^2 + 4*alfa*delta^2 - 24*alfa*delta + 28*alfa - delta^2 + 10*delta - 13))/(4*(20*F*delta - 8*alfa - 6*delta - 12*F + 8*alfa*delta - 11*F*delta^2 + 2*F*delta^3 - 2*alfa*delta^2 - 4*alfa^2*delta + 4*alfa^2 + delta^2 + alfa^2*delta^2 + 7)^2);
alfa = 0:0.005:1;
f = 0:0.005:1;
for i = 1:numel(alfa)
Alfa = alfa(i);
for j = 1:numel(f)
F = f(j);
t1 = totalprofit1(Alfa,F);
t2 = totalprofit2(Alfa,F);
t3 = totalprofit3(Alfa,F);
[tmax,idx] = max([t1,t2,t3]);
if idx==1
if - (Alfa - 1)^2 - (2*F*(4*delta - 6))/(delta - 2)^2>0 &((Alfa - 1)*(2*N - 4*delta - 4*Alfa*delta + 6))/(delta + Alfa*delta - 2)^2<0 & - (Alfa - 1)^2 - (2*F*(Alfa - 1)*(2*Alfa - 4*delta - 4*Alfa*delta + 6))/(delta + Alfa*delta - 2)^2 >0
Fun(i,j) = 1;
else
Fun(i,j) = 2;
end
end
if idx==2
if 4*F>(1-Alfa)^2 & delta <(0.5*(4.0*F + Alfa - 1.0*(16.0*F^2 - 8.0*F*Alfa + 8.0*F + 4.0*Alfa^3 - 11.0*Alfa^2 + 10.0*Alfa - 3.0)^(1/2) - 1.0))/(Alfa - 1.0) & delta< (1.0*(F*Alfa - 2.0*Alfa - 4.0*F + Alfa^2 + 1.0))/(2.0*F*Alfa - 2.0*Alfa - 4.0*F + Alfa^2 + 1.0)
Fun(i,j) = 3;
else
Fun(i,j) = 4;
end
end
if idx==3
if -(4*(Alfa^2 - 2*Alfa - 3*F + 2*F*delta + 1))/(delta - 2)^2>0 & Alfa <1 & (3*F+F*Alfa-2*F*delta+Alfa*delta^2-delta^2-2*F*Alfa*delta)>0
Fun(i,j) = 5;
else
Fun(i,j) = 6;
end
end
end
end
colormap(jet(6))
contourf(alfa,f,Fun)
colorbar('Ticks',1:6,'TickLabels',["1" "2" "3" "4" "5" "6" " "]);

Sign in to comment.

More Answers (1)

Alan Weiss
Alan Weiss on 30 Jan 2023
This sounds like a multiobjective optimization problem. See Generate and Plot Pareto Front and, if you have Global Optimization Toolbox, Multiobjective Optimization.
Alan Weiss
MATLAB mathematical toolbox documentation
  2 Comments
Melda Hasiloglu
Melda Hasiloglu on 30 Jan 2023
Hi Alan,
Thanks for your reply. Did you mean that I can solve this by using the same approach as multiobjective optimization? Because my problem isn't multiobjective and the provided profit functions are already the optimal functions which I obtained them after several calculations. My current goal is to compare these 3 scenarios based on parameters, alfa and F.
Alan Weiss
Alan Weiss on 30 Jan 2023
I do not understand your problem. You say that you have three objective functions. But you say that you do not have a multiobjective problem. So what are you trying to do? I do not understand what "compare these 3 scenarios based on parameters, alfa and F" means.
Alan Weiss
MATLAB mathematical toolbox documentation

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!