solve ODE using finite difference method
15 views (last 30 days)
Show older comments
du/dt=d^2u/dx^2
0 Comments
Answers (2)
SAI SRUJAN
on 13 Aug 2024
Hi Emon,
I understand that you are trying to solve a pde using finite difference method.
Refer to the following code sample to proceed further,
Nx = 50; % Number of spatial points
Nt = 1000; % Number of time steps
% Discretization
dx = 1 / (Nx - 1);
dt = 0.1 / Nt;
x = linspace(0, 1, Nx);
t = linspace(0, 0.1, Nt);
% Stability condition
if dt > dx^2 / (2)
error('Time step is too large for stability.');
end
% Initial condition
u = sin(pi * x);
% Time-stepping loop
for n = 1:Nt
u_new = u;
for i = 2:Nx-1
% Finite difference approximation
u_new(i) = u(i) +dt / dx^2 * (u(i+1) - 2*u(i) - u(i-1));
end
u = u_new;
end
plot(x, u);
xlabel('x');
ylabel('u');
title('Solution of the PDE \partial u/\partial t = \partial^2 u/\partial x^2');
I hope this helps!
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!