How can I plot a second order differential equation with boundary condition using fourth order Runge-Kutta method?
1 view (last 30 days)
Show older comments
%%%%%%%%%%%%%%%% Runga-Kutta%%%%%%%%%%%%%%%%
h=0.0001;
xfinal=d;
x(1)=0;
y(1)=0; % initial value of y
y(xfinal)=0; % final value of y
% Let y' = z (f1) and y" = z' (f2);
f1 = @(x, y, z) z;
f2 = @(x, y, z) ky^2*y-(ky*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d))*y)/(OP3-ky*u0*(sin(pi*x/d).^2-1/2)+...
B*(OP3-ky*u0*(sin(pi*x/d).^2-1/2)-A*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d)-ky*(OP3-ky*u0*(sin(pi*x/d).^2-1/2))))*(1-...
M*(opi^2)/(M*OP3^2-gi*Ti*ky^2)));
for i=1:ceil(xfinal/h)
x(i+1)=x(i)+h;
K1y = f1(x(i), y(i), z(i));
K1z = f2(x(i), y(i), z(i));
K2y = f1(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K2z = f2(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K3y = f1(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K3z = f2(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K4y = f1(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
K4z = f2(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
y(i+1) = y(i)+(K1y+2*K2y+2*K3y+K4y)*h/6;
z(i+1) = z(i)+(K1z+2*K2z+2*K3z+K4z)*h/6;
end
plot(x,y,'-','linewidth',1)
hold on
1 Comment
John D'Errico
on 17 Mar 2023
It looks like you already solved the ODE, and plotted it. Where is the problem? (Even so, if this were not homework, as it surely is, you should be using an ODE solver, not writing your own code.)
Answers (1)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!