Can this equation be solved for x? If yes, how does the solution look? Thank you. Karl.

1 view (last 30 days)
a*x^4-b*x^2-c*x+d=0

Accepted Answer

Askic V
Askic V on 30 May 2023
Edited: Askic V on 30 May 2023
Things become complicated very easy with high degree polynomials.
First, this is an example for qudratic equation:
syms a b c x
% Define the equation
eqn = a*x^2 + b*x + c == 0;
% Solve the equation symbolically
sol = solve(eqn, x);
pretty(sol)
/ 2 \ | b + sqrt(b - 4 a c) | | - -------------------- | | 2 a | | | | 2 | | b - sqrt(b - 4 a c) | | - -------------------- | \ 2 a /
and this is for 4th order:
syms a b c d x
% Define the equation
eqn = a*x^4-b*x^2-c*x+d == 0;
% Solve the equation symbolically
% The option specifies the max degree
% of polynomials for which the solver tries to find and return
% an explicit solutions
sol = solve(eqn, x,'MaxDegree',4);
pretty(sol(1)) % only first solution
/ / 3 2 \ \ | | 2 b 27 c 72 b d | | | sqrt(6) c sqrt| 3 sqrt(3) #4 - ---- + ----- + ------ | 3 | | 1/3 2 | 3 2 2 | | | b #1 #2 12 d #1 12 b #1 2/3 \ a a a / | sqrt| ------------- - ------- - ----- - 9 #1 #2 - -------------------------------------------------------- | | a a 2 a | #1 \ a / - ------- - --------------------------------------------------------------------------------------------------------------- 1/6 / 1/3 \1/4 6 #2 | 12 d 2/3 6 b #2 | 1/6 6 | ---- + #3 + 9 #2 + --------- | #2 \ a a / where / 1/3 \ | 12 d 2/3 b #2 6 | #1 == sqrt| ---- + #3 + 9 #2 + --------- | \ a a / 3 2 sqrt(3) #4 b c 4 b d #2 == ---------- - ----- + ---- + ----- 18 3 2 2 27 a 2 a 3 a 2 b #3 == -- 2 a / 4 3 4 3 2 2 2 2 \ | 27 c 256 d 16 b d 4 b c 128 b d 144 b c d | #4 == sqrt| ----- - ------ - ------- - ------- + --------- + ---------- | | 4 3 5 5 4 4 | \ a a a a a a /

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!