try to find hessian matrix
30 views (last 30 days)
Show older comments
f(k) = n*ln(k)-n*ln(1/n*sum(i=1 to n)xi^k+(k-1)sum of (1to n)ln(xi))-n
3 Comments
Dyuman Joshi
on 13 Jul 2023
The expression you have written above is not clear. Please format it properly.
Accepted Answer
Rahul
on 13 Jul 2023
Hi Taniya,
Assuming you have k, n and xi, you can try the following code to find the Hessian Matrix:
f = n*log(k) - n*log(1/n * sum(xi^k, i, 1, n) + (k-1) * sum(log(xi), i, 1, n)) - n;
% Calculate the second partial derivatives
d2f_dk2 = diff(f, k, 2);
d2f_dxi_dk = diff(f, k, xi);
d2f_dk_dxi = diff(f, xi, k);
d2f_dxi2 = diff(f, xi, 2);
% Create the Hessian matrix
H = [d2f_dk2, d2f_dxi_dk; d2f_dk_dxi, d2f_dxi2];
Hope this helps.
Thanks.
0 Comments
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!