Clear Filters
Clear Filters

Runga-Kutta method in the matrix form

1 view (last 30 days)
Ban
Ban on 31 Aug 2023
Commented: Torsten on 31 Aug 2023
Hi,
I have a set of differential eqns as: dV/dt = A*V, here, V = [V1 V2 V3] and A= [a11 a12 a13; a21 a22 a23; a31 a32 a33]. Value of A is so complex that writing down the eqns. in dV1/dt = ... dV2/dt = ... dV3/dt = ... is not convenient. So I need to solve this using Runga-Kutta method in the matrix form. I am trying the following:
V=zeros(length(t),3);
V(1,:)=[u0x, u0y, u0z];
Fx = @(t, V) A*V ;
for i=1: length(t)-1
K1 = ...
K2 = ...
K3 = ...
K4 =...
V(i+1) = V(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
end
However, this gives the error - Dimensions of matrices being concatenated are not consistent.
Could you please suggest how do I move ahead?

Answers (1)

Torsten
Torsten on 31 Aug 2023
Moved: Torsten on 31 Aug 2023
Supply your full code so that we can test it, not only dots for missing parts.
It should be obvious that
V(i+1) = V(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
must throw an error because your solution V is not a scalar, but a 3x1 vector.
  2 Comments
Ban
Ban on 31 Aug 2023
clear;
close all;
clc;
t0 = 0; %seconds
tf =20; %seconds
tspan=[t0 tf] ;
h=0.01;
x0=0;
y0=0;
z0=-0.5;
% Initial field velocity @t=0, x=0, z=0
u0x=exp(z0)*cos(x0-t0);
u0y=0;
u0z=exp(z0)*sin(x0-t0);
t = tspan(1):h:tspan(2);
X=zeros(length(t),3);
VX=zeros(length(t),3);
X(1,:)=[x0, y0, z0];
VX(1,:)=[u0x, u0y, u0z];
Fx = @(t, VX) [1 0 1; 1 1 0; 1 0 1]*VX;
for i=1: length(t)-1
K1 = Fx(t(i),VX(i));
K2 = Fx(t(i)+0.5*h, VX(i)+0.5*h*K1);
K3 = Fx(t(i)+0.5*h, VX(i)+0.5*h*K2);
K4 = Fx(t(i)+h, VX(i)+h*K3);
VX(i+1) = VX(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
vx_passive=VX;
plot(t,vx_passive,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$vx$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);
hold on
Torsten
Torsten on 31 Aug 2023
clear;
close all;
clc;
t0 = 0; %seconds
tf =20; %seconds
tspan=[t0 tf] ;
h=0.01;
x0=0;
y0=0;
z0=-0.5;
% Initial field velocity @t=0, x=0, z=0
u0x=exp(z0)*cos(x0-t0);
u0y=0;
u0z=exp(z0)*sin(x0-t0);
t = tspan(1):h:tspan(2);
VX=zeros(length(t),3).';
VX(:,1)=[u0x, u0y, u0z].';
Fx = @(t, VX) [1 0 1; 1 1 0; 1 0 1]*VX;
for i=1: length(t)-1
K1 = Fx(t(i),VX(:,i));
K2 = Fx(t(i)+0.5*h, VX(:,i)+0.5*h*K1);
K3 = Fx(t(i)+0.5*h, VX(:,i)+0.5*h*K2);
K4 = Fx(t(i)+h, VX(:,i)+h*K3);
VX(:,i+1) = VX(:,i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
plot(t,VX,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$vx$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);

Sign in to comment.

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!