- 1x1 field: 2 possibilities
- 2x1 field: 4 possibilities
- 2x2 field: 16 possibilities
- ...
- 5x5 field: 33,554,432 possibilities
- 6x6 field: 68,719,476,736 possibilities
How to optimize the code?
2 views (last 30 days)
Show older comments
John Jairo Páez Rodriguez
on 14 Sep 2023
Commented: John Jairo Páez Rodriguez
on 18 Sep 2023
Hi Guys,
I developed a code that generates and displays all the possibilities of a game on a graph. Below, I'm sending the error-free code. The issue arises when the game has a large number of pieces, significantly increasing the quantity of possibilities. The question is: How can I optimize the code for better efficiency?
In the code, the variable "NBE," declared in the second line, ranges from 1 to 10. For options 1, 2, 3, 4, 5, it functions adequately. However, starting from 6 and onwards, the code fails to compile.
%% Variables Iniciales n^2+2n n=numero de fichas.
NBE= 4;% Número Bloques Equipo
EstadoInicial=[1:NBE 0 NBE+1:2*NBE];
GrafoEscalera=[EstadoInicial 0]; MatrizMatlab=[];
EstadosPendientes = 1;
%% Generar Grafo
while (EstadosPendientes ~= 0)
CEC=GrafoEscalera(:,end); % Ultima posición (Si ha sido visitado o no)
PosicionEstadoConCero=find(CEC==0); % Encuentra 0s en la Matriz
if isempty(PosicionEstadoConCero)
EstadosPendientes = 1;
break;
end
[NuevaCopiaEC] = GrafoEscalera(PosicionEstadoConCero(1,1),1:end-1);
for P=1:4
if P==1 % Accion 1 Mover 1 casilla a derecha
NuevaCEC=NuevaCopiaEC;
[MMatriz] = mover(NuevaCEC, 1);
[MatrizMatlab] = NodosVertices(NuevaCEC, MMatriz, MatrizMatlab);
[GrafoEscalera] = NuevoGrafo(MMatriz, GrafoEscalera);
elseif P==2 % Accion 2 Mover 1 casilla a izquierda
NuevaCEC=NuevaCopiaEC;
[MMatriz] = mover(NuevaCEC, 2);
[MatrizMatlab] = NodosVertices(NuevaCEC, MMatriz, MatrizMatlab);
[GrafoEscalera] = NuevoGrafo(MMatriz, GrafoEscalera);
elseif P==3 % Accion 3 Saltar 1 casilla a derecha
NuevaCEC=NuevaCopiaEC;
[SMatriz] = saltar(NuevaCEC, 1, NBE);
[MatrizMatlab] = NodosVertices(NuevaCEC, SMatriz, MatrizMatlab);
[GrafoEscalera] = NuevoGrafo(SMatriz, GrafoEscalera);
elseif P==4 % Accion 4 Saltar 1 casilla a izquierda
NuevaCEC=NuevaCopiaEC;
[SMatriz] = saltar(NuevaCEC, 2, NBE);
[MatrizMatlab] = NodosVertices(NuevaCEC, SMatriz, MatrizMatlab);
[GrafoEscalera] = NuevoGrafo(SMatriz, GrafoEscalera);
end
end
GrafoEscalera(PosicionEstadoConCero(1,1),end)=1;
end
%% Hallar la Frecuencia
%% Generar Grafo
[s,t] = IDNodos(GrafoEscalera, MatrizMatlab);
% MatrizA=[ID' num2str(Matriz1(:,1:end-1))];sourceTarget=[Matriz2 Matriz3];
G = graph(s,t);
h = plot(G,'Layout','force','WeightEffect','direct');
hold on
%% Funciones
% Levantar
function [MMatriz] = mover(MatrizB, lado)
idx=find(MatrizB==0);
[~,B]=size(MatrizB);
if lado==1 && idx < B && idx > 1% Derecha
Bloque=MatrizB(idx-1);
MatrizB(idx-1)=0;
MatrizB(idx)=Bloque;
elseif lado==2 && idx < B % Izquierda
Bloque=MatrizB(idx+1);
MatrizB(idx+1)=0;
MatrizB(idx)=Bloque;
end
MMatriz=MatrizB;
end
function [SMatriz] = saltar(MatrizB, lado, NB)
idx=find(MatrizB==0);
[~,B]=size(MatrizB);
MA=(1:NB);MB=(NB+1:NB*2);
if lado==1 && idx>2 % Derecha
Bloque=MatrizB(idx-2);
BloqueDeSalto=MatrizB(idx-1);
% En que grupo esta Bloque y BloqueDeSalta
if (ismember(Bloque,MA) && ismember(BloqueDeSalto,MB)) || (ismember(Bloque,MB) && ismember(BloqueDeSalto,MA))
MatrizB(idx-2)=0;
MatrizB(idx)=Bloque;
end
elseif lado==2 && idx < B-2% Izquierda
Bloque=MatrizB(idx+2);
BloqueDeSalto=MatrizB(idx+1);
if (ismember(Bloque,MA) && ismember(BloqueDeSalto,MB)) || (ismember(Bloque,MB) && ismember(BloqueDeSalto,MA))
MatrizB(idx+2)=0;
MatrizB(idx)=Bloque;
end
end
SMatriz=MatrizB;
end
function [MatrizMatlab] = NodosVertices(Matriz1, Matriz2, MatrizMatlab)
[A,~]=size(MatrizMatlab);Comparar=1;
if isequal(Matriz1, Matriz2)
Comparar=0;
else
Matriz3 = [Matriz1 Matriz2];
Matriz4 = [Matriz2 Matriz1];
for j=1:A
if isequal(Matriz3, MatrizMatlab(j,:)) || isequal(Matriz4, MatrizMatlab(j,:))
Comparar=0;
end
end
if Comparar==0
MatrizMatlab=MatrizMatlab;
elseif Comparar==1
MatrizMatlab = cat(1,MatrizMatlab,Matriz3);
end
end
end
function [GrafoEscalera] = NuevoGrafo(Matriz1, Matriz2)
[A,~]=size(Matriz2);
Comparar=1;
Matrizi=[Matriz1 0];
for j=1:A
if isequal(Matriz1, Matriz2(j,1:end-1))
Comparar=0;
end
end
if Comparar==0
GrafoEscalera=Matriz2;
elseif Comparar==1
GrafoEscalera=cat(1,Matriz2,Matrizi);
end
end
function [s,t] = IDNodos(Matriz1, Matriz2)
[A,~]=size(Matriz1);
[B,C]=size(Matriz2);
s=[];t=[];
for i=1:A
Nodo = Matriz1(i,1:end-1);
for j=1:B
if isequal(Nodo, Matriz2(j,1:C/2))
s(j,1) = i;
end
if isequal(Nodo, Matriz2(j,C/2+1:C))
t(j,1) = i;
end
end
end
end
0 Comments
Accepted Answer
Nathan Hardenberg
on 15 Sep 2023
You write "the code fails to compile". What do you mean by that? You most likely run the code, and it takes very long to finish, right? At least so long that you stop it beforehand. Matlab does not compile, if you run it in Matlab itself.
Regarding the time it takes: It is very hard to optimize such large code if one does not have any more insighs except the code itself. But I think in your case it does not really matter. Displaying all possibilities is expected to take very long when you increase the number of players. I don't know details of the game, but the number of posibilities is most likely exponential. That's why it is quite fast in the begining, but at some point it takes very long. A popular example is a chess-engine, that tries to calculate all posiibilities. But if I remember correctly the maximum moves it can predict is about 5 or so (But other trickery gets used aswell, to save computation).
Small example:
Fill a "Connect Four"-game. Red and Yellow colored balls. Now it depends on the size of the board.
Here the number of possibilites gets calculated by , where n is the number of fields. As you can see, calculating all of that is very time expensive. And in your game it is most likely something similar
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!