You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
what is finite elemnt method code for Sytem of ODE
2 views (last 30 days)
Show older comments
what is the math lab code of the following by finite element method please please
f"'+(f+g)f''-Kf^5-f'^2-Mf'+lambda*(theta+N*phi)=0------ (1)
g'''+(f+g)g''-kg^5+M*g'=0 ----- (2)
theta''+Pr*(f+g)theta'+Pr*Nb*theta'phi'+Pr*Nt*theta'^2-deltatPr(f+g)(f'+g')theta')+(theta'')(f+g)^2=0------------------------(2)
phi"+(Nt/Nb)*theta"+Sc(f+g)-deltac*Sc[(f+g)^2phi"+(f+g)(f'+g')ph']= 0------(3)
'f','g','theta','phi' are the dependent variables and η is the independent variable
And the boundary conditions are as follows:
f′(η) = 1 + αf″(η)) + βf‴(η) + cf⁗(η) + δf(v)(η),
g(η) =c + φg″(η) + χg‴(η) + ψg⁗(η) + ωg(v)(η),
θ′(η) = - βi1(1 - θ(η)),
ϕ′(η) =- βi2(1 - ϕ(η)), at η = 0, f′(∞) ⟶ 0, f″(∞) ⟶ 0, f‴(∞) ⟶ 0, g′(∞) ⟶ 0, g″(∞) ⟶ 0, g‴(∞) ⟶ 0, θ(∞) ⟶ 0, ϕ(∞) ⟶ 0
So solving these equations numerically I have used finite element method.
Answers (1)
Torsten
on 22 Oct 2023
Moved: Torsten
on 22 Oct 2023
First correct your boundary conditions.
You need 3 + 3 + 2 + 2 = 10, and they can only have derivatives up to (order of equations - 1).
Thus f''', f'''', g''', g'''' are not allowed.
After having done this, I suggest you start setting up your problem in bvp4c first to have a reference solution.
4 Comments
Tadese
on 23 Oct 2023
Moved: Torsten
on 23 Oct 2023
Or The paper is also
The correction on f^5=f''''' and g^5=g'''''
what is the math lab code of the following by finite element method please please
f"'+(f+g)f''-Kf'''''-f'^2-Mf'+lambda*(theta+N*phi)=0------ (1)
g'''+(f+g)g''-kg'''''+M*g'=0 ----- (2)
theta''+Pr*(f+g)theta'+Pr*Nb*theta'phi'+Pr*Nt*theta'^2-deltatPr(f+g)(f'+g')theta')+(theta'')(f+g)^2=0------------------------(2)
phi"+(Nt/Nb)*theta"+Sc(f+g)-deltac*Sc[(f+g)^2phi"+(f+g)(f'+g')ph']= 0------(3)
'f','g','theta','phi' are the dependent variables and η is the independent variable
And the boundary conditions are as follows:
f(0)=g(0)=0,
f′(η) = 1 + αf″(η)) + βf‴(η) + cf⁗(η) + δf'''''(η),
g(η) =c + φg″(η) + χg‴(η) + ψg⁗(η) + ωg'''''(η),
Nb*phi(0)+Nt*theta'(0)=0,
θ′(η) = - βi1(1 - θ(η)), at η = 0, f′(∞) ⟶ 0, f″(∞) ⟶ 0, f‴(∞) ⟶ 0, g′(∞) ⟶ 0, g″(∞) ⟶ 0, g‴(∞) ⟶ 0, θ(∞) ⟶ 0, ϕ(∞) ⟶ 0
So solving these equations numerically I have used finite element method.
By using bvp4c I can but my dissertation by using Finite element method
so, please please any one how know this math lab code help me. Thank you
Tadese
on 23 Oct 2023
Torstem I turst you. please please help me any paper similar of this. For example the following paper if you know one of the paper code by finite element please please help me .Thank you
Tadese
on 5 Nov 2023
Moved: John D'Errico
on 5 Nov 2023
what is the math lab code of the following by finite element method please please
f"'+(f+g)f''-Kf'''''-f'^2-Mf'+lambda*(theta+N*phi)=0------ (1)
g'''+(f+g)g''-kg'''''+M*g'=0 ----- (2)
theta''+Pr*(f+g)theta'+Pr*Nb*theta'phi'+Pr*Nt*theta'^2-deltatPr(f+g)(f'+g')theta')+(theta'')(f+g)^2=0------------------------(2)
phi"+(Nt/Nb)*theta"+Sc(f+g)-deltac*Sc[(f+g)^2phi"+(f+g)(f'+g')ph']= 0------(3)
'f','g','theta','phi' are the dependent variables and η is the independent variable
And the boundary conditions are as follows:
f(0)=g(0)=0,
f′(η) = 1 + αf″(η)) + βf‴(η) + cf⁗(η) + δf'''''(η),
g(η) =c + φg″(η) + χg‴(η) + ψg⁗(η) + ωg'''''(η),
Nb*phi(0)+Nt*theta'(0)=0,
θ′(η) = - βi1(1 - θ(η)), at η = 0, f′(∞) ⟶ 0, f″(∞) ⟶ 0, f‴(∞) ⟶ 0, g′(∞) ⟶ 0, g″(∞) ⟶ 0, g‴(∞) ⟶ 0, θ(∞) ⟶ 0, ϕ(∞) ⟶ 0
So solving these equations numerically I have used finite element method.
By using bvp4c I can but my dissertation by using Finite element method
so, please please any one how know this math lab code help me. Thank you
This is my math lab code can you help me please
function couple130m
format long
clear all
clc
n=200;
nn=n*2+1;
lgth=6 ; %length of the domain
he=lgth/n; % increment
x = [0.0:he/2:lgth]; % nodal points in the domian
AC = 0.000001;% FOR ACCURACY(tolerence)
K=0.9;
M=1.2;
delta1=0.2;
delta2=0.2;
lamda=0.5;
N=0.5; Nt=0.1;
Pr=0.72;
Sc=0.8;
gamma=0.1;
alpha=-1;
delta=1;
beta1=0.1;
beta2=0.3;
Bi=0.5;
Nb=0.1;
for k=[0.2 0.4 0.6 0.8]
F = sparse(nn+1,1);
G = sparse(nn+2,1);
E = sparse(nn+1,1);
Q = sparse(nn+2,1);
T = sparse(nn+2,1);
H = sparse(nn+2,1);
c = 1.0;
count=0;
tic
while(c>0)
[F1,G1,E1,Q1,T1,H1] = assembly(F,G,E,Q,T,H,n,nn,he,Pr,M,Sc,gamma,...
lamda,delta,Bi,alpha,beta1,beta2,delta1,delta2,Nt,Nb,N,K);
c = 0.0;
for i=1:nn
if(abs(F(i)-F1(i))>AC)
c = c+1;
break;
end
if(abs(G(i)-G1(i))>AC)
c = c+1;
break;
end
if(abs(E(i)-E1(i))>AC)
c = c+1;
break;
end
if(abs(Q(i)-Q1(i))>AC)
c = c+1;
break;
end
if(abs(T(i)-T1(i))>AC)
c = c+1;
break;
end
if(abs(H(i)-H1(i))>AC)
c = c+1;
break;
end
end
F = F1;
G = G1;
E = E1;
Q = Q1;
T = T1;
H = H1;
count=count+1;
end
disp('Hence Solution=:');
x = [0.0:he/2:lgth];
figure (1)
% plot(x,G(1:nn),'--b')
% xlabel('\eta')
% ylabel('g(\eta)')
% hold on
if Nb==0.02
plot(x,G(1:nn),'b','linewidth',0.8)
elseif Nb ==0.04
plot(x,G(1:nn),'--r','linewidth',0.8)
elseif Nb==0.06
plot(x,G(1:nn),'g','linewidth',0.8)
elseif Nb==0.08
plot(x,G(1:nn),'k','linewidth',0.8)
else
plot(x,G(1:nn),'k','linewidth',0.8)
end
xlabel('\eta')
ylabel('f''(\eta)')
hold on;
legend('Nb= 0.02','Nb= 0.04','Nb= 0.06','Nb=0.08')
% figure (2)
% if Nb==0.02
% plot(x,Q(1:nn),'b','linewidth',0.8)
% elseif Nb==0.04
% plot(x,Q(1:nn),'--r','linewidth',0.8)
% elseif Nb==0.06
% plot(x,Q(1:nn),'g','linewidth',0.8)
% elseif Nb==0.08
% plot(x,G(1:nn),'k','linewidth',0.8)
% else
% plot(x,Q(1:nn),'k','linewidth',0.8)
%
% end
% xlabel('\eta')
% ylabel('g''(\eta)')
% hold on;
% legend('Nb= 0.02','Nb= 0.04','Nb= 0.06','Nb=0.08')
% figure (3)
% if Nb==0.02
% plot(x,T(1:nn),'b','linewidth',0.8)
% elseif Nb==0.04
% plot(x,T(1:nn),'r','linewidth',0.8)
% elseif Nb==0.06
% plot(x,T(1:nn),'g','linewidth',0.8)
% elseif Nb==0.08
% plot(x,T(1:nn),'k','linewidth',0.8)
% else
% plot(x,T(1:nn),'k','linewidth',0.8)
% end
% xlabel('\eta')
% ylabel('\theta(\eta)')
% hold on;
% legend('Nb= 0.02','Nb= 0.04','Nb= 0.06','Nb=0.08')
% figure (4)
% if Nb==0.02
% plot(x,H(1:nn),'b','linewidth',0.8)
% elseif Nb==0.04
% plot(x,H(1:nn),'r','linewidth',0.8)
% elseif Nb==0.06
% plot(x,H(1:nn),'g','linewidth',0.8)
% elseif Nb==0.08
% plot(x,H(1:nn),'k','linewidth',0.8)
% else
% plot(x,H(1:nn),'k','linewidth',0.8)
% end
% xlabel('\eta')
% ylabel('\phi(\eta)')
% hold on;
% legend('Nb= 0.02','Nb= 0.04','Nb= 0.06','Nb=0.08')
end
Skin_friction =-E(nn+1)
%Skin_friction =-E(nn+1)
Heat_Transfer =-T(nn+1)
sher_wood =-Q(nn+1)
fprintf('%10.6f\t %10.6f\t \n',full(-E(nn+1)),full(-T(nn+1)),full(-H(nn+1)));
end
function [F1,G1,E1,Q1,T1,H1] = assembly(F,G,E,Q,T,H,n,nn,he,Pr,M,Sc,gamma,...
lamda,delta,Bi,alpha,beta1,beta2,delta1,delta2,Nt,Nb,N,K)
% INITIALIZE MATRICES
l1 = sparse(nn,nn);l2 = sparse(nn,nn);l3 = sparse(nn,nn);l4 = sparse(nn,nn);
l5 = sparse(nn,nn);l6 = sparse(nn,nn);l7 = sparse(nn,nn);l8 = sparse(nn,nn);
l9 = sparse(nn,nn);l10 = sparse(nn,nn);l11 = sparse(nn,nn);l12 = sparse(nn,nn);
l13 = sparse(nn,nn);l14 = sparse(nn,nn);l15 = sparse(nn,nn);l16 = sparse(nn,nn);
l17 = sparse(nn,nn);l18 = sparse(nn,nn);l19 = sparse(nn,nn);l20 = sparse(nn,nn);
l21 = sparse(nn,nn);l22 = sparse(nn,nn);l23 = sparse(nn,nn);l24 = sparse(nn,nn);l25 = sparse(nn,nn);
l26 = sparse(nn,nn);l27 = sparse(nn,nn);l28 = sparse(nn,nn);l29 = sparse(nn,nn);l30 = sparse(nn,nn);
l31 = sparse(nn,nn);l32 = sparse(nn,nn);l33 = sparse(nn,nn);l34 = sparse(nn,nn);l35 = sparse(nn,nn);l36 = sparse(nn,nn);
R1 = sparse(nn,1);R2 = sparse(nn,1);R3 = sparse(nn,1);R4 = sparse(nn,1);R5 = sparse(nn,1);R6 = sparse(nn,1);
%step3: Assembly of element equation i.e.[k]{y}={q}
q11=0.0;
q12=0.0;
q13=0.0;
q21=0.0;
q22=0.0;
q23=0.0;
q31=0.0;
q32=0.0;
q33=0.0;
q41=0.0;
q42=0.0;
q43=0.0;
q51=0.0;
q52=0.0;
q53=0.0;
q61=0.0;
q62=0.0;
q63=0.0;
f1=[q11;q12;q13];
f2=[q21;q22;q23];
f3=[q31;q32;q33];
f4=[q41;q42;q43];
f5=[q51;q52;q53];
f6=[q61;q62;q63];
p=[];
for i=1:n
j=(i-1)*2+1;
p=[p;[j,j+1,j+2]];%Connectivity matrix
end
lmm=[];
for i=1:n
lmm =[lmm;[p(i,1),p(i,2),p(i,3)]];
end
for i=1:n
lm=lmm(i,:);
[kv11,kv1,kv,kv1pa,kv1pb,kv1pc,kvpa,kvpb,kvpc,...
kv1pp11,kv1pp12,kv1pp13,kv1pp21,kv1pp22,kv1pp23,kv1pp31,...
kv1pp32,kv1pp33,kv11pp11,kv11pp12,kv11pp13,kv11pp21,kv11pp22,...
kv11pp23,kv11pp31,kv11pp32,kv11pp33,...
kv1p1a,kv1p1b,kv1p1c,kt,knn] = quadraticelement(he,i);
%F
k11=kv1;
k12=sparse(3,3);
k13=-kv;
k14=sparse(3,3);
k15=sparse(3,3);
k16=sparse(3,3);
%S
k21=sparse(3,3);
k22=-kv11+(kv1pa*F(lm(1))+kv1pb*F(lm(2))+kv1pc*F(lm(3)))+...
(kv1pa*E(lm(1))+kv1pb*E(lm(2))+kv1pc*E(lm(3)))-...
kvpa*(G(lm(1))+kvpb*G(lm(2))+kvpc*G(lm(3)))+...
K*(knn)-M*kv;
k23=sparse(3,3);
k24=sparse(3,3);
k25=lamda*kv;
k26=lamda*N*kv;
%G
k31=sparse(3,3);
k32=sparse(3,3);
k33=sparse(3,3);
k34=sparse(3,3);
k35=sparse(3,3);
k36=sparse(3,3);
%H
k41=sparse(3,3); k42=sparse(3,3);k43=sparse(3,3);
k44=-kv11+kv1pa*F(lm(1))+kv1pb*F(lm(2))+kv1pc*F(lm(3))+...
kv1pa*E(lm(1))+kv1pb*E(lm(2))+kv1pc*E(lm(3))-...
K*(knn)-kvpa*Q(lm(1))+kvpb*Q(lm(2))+kvpc*Q(lm(3))-...
M*kv;
k45=sparse(3,3); k46=sparse(3,3);
%H
k51=sparse(3,3);k52=sparse(3,3);k53=sparse(3,3);
k54=sparse(3,3);
k55=-kv11+(Pr*Nb)*(kv1p1a*H(lm(1))+kv1p1b*H(lm(2))+...
kv1p1c*H(lm(3)))+...
(Pr*Nt)*(kv1p1a*T(lm(1))+kv1p1b*T(lm(2))+...
kv1p1c*T(lm(3)))+...
Pr*kv1pa*F(lm(1))+kv1pb*F(lm(2))+kv1pc*F(lm(3))+...
kv1pa*E(lm(1))+kv1pb*E(lm(2))+kv1pc*E(lm(3))-...
(Pr*delta1)*(kv1pp11*F(lm(1))*G(lm(1))+...
kv1pp12*F(lm(1))*G(lm(2))+...
kv1pp13*F(lm(1))*G(lm(3))+...
kv1pp21*F(lm(2))*G(lm(1))+...
kv1pp22*F(lm(2))*G(lm(2))+...
kv1pp23*F(lm(2))*G(lm(3))+...
kv1pp31*F(lm(3))*G(lm(1))+...
kv1pp32*F(lm(3))*G(lm(2))+...
kv1pp33*F(lm(3))*G(lm(3))+...
kv1pp11*F(lm(1))*Q(lm(1))+...
kv1pp12*F(lm(1))*Q(lm(2))+...
kv1pp13*F(lm(1))*Q(lm(3))+...
kv1pp21*F(lm(2))*Q(lm(1))+...
kv1pp22*F(lm(2))*Q(lm(2))+...
kv1pp23*F(lm(2))*Q(lm(3))+...
kv1pp31*F(lm(3))*Q(lm(1))+...
kv1pp32*F(lm(3))*Q(lm(2))+...
kv1pp33*F(lm(3))*Q(lm(3))+...
kv1pp11*E(lm(1))*G(lm(1))+...
kv1pp12*E(lm(1))*G(lm(2))+...
kv1pp13*E(lm(1))*G(lm(3))+...
kv1pp21*E(lm(2))*G(lm(1))+...
kv1pp22*E(lm(2))*G(lm(2))+...
kv1pp23*E(lm(2))*G(lm(3))+...
kv1pp31*E(lm(3))*G(lm(1))+...
kv1pp32*E(lm(3))*G(lm(2))+...
kv1pp33*E(lm(3))*G(lm(3))+...
kv1pp11*Q(lm(1))*E(lm(1))+...
kv1pp12*Q(lm(1))*E(lm(2))+...
kv1pp13*Q(lm(1))*E(lm(3))+...
kv1pp21*Q(lm(2))*E(lm(1))+...
kv1pp22*Q(lm(2))*E(lm(2))+...
kv1pp23*Q(lm(2))*E(lm(3))+...
kv1pp31*Q(lm(3))*E(lm(1))+...
kv1pp32*Q(lm(3))*E(lm(2))+...
kv1pp33*Q(lm(3))*E(lm(3))+...
kv11pp11*F(lm(1))*F(lm(1))+...
kv11pp12*F(lm(1))*F(lm(2))+...
kv11pp13*F(lm(1))*F(lm(3))+...
kv11pp21*F(lm(2))*F(lm(1))+...
kv11pp22*F(lm(2))*F(lm(2))+...
kv11pp23*F(lm(2))*F(lm(3))+...
kv11pp31*F(lm(3))*F(lm(1))+...
kv11pp32*F(lm(3))*F(lm(2))+...
kv11pp33*F(lm(3))*F(lm(3))+...
2*(kv11pp11*F(lm(1))*E(lm(1))+...
kv11pp12*F(lm(1))*E(lm(2))+...
kv11pp13*F(lm(1))*E(lm(3))+...
kv11pp21*F(lm(2))*E(lm(1))+...
kv11pp22*F(lm(2))*E(lm(2))+...
kv11pp23*F(lm(2))*E(lm(3))+...
kv11pp31*F(lm(3))*E(lm(1))+...
kv11pp32*F(lm(3))*E(lm(2))+...
kv11pp33*F(lm(3))*E(lm(3))))+...
(Pr*delta1)*(kv1pp11*E(lm(1))*E(lm(1))+...
kv11pp12*E(lm(1))*E(lm(2))+...
kv11pp13*E(lm(1))*E(lm(3))+...
kv11pp21*E(lm(2))*E(lm(1))+...
kv11pp22*E(lm(2))*E(lm(2))+...
kv11pp23*E(lm(2))*E(lm(3))+...
kv11pp31*E(lm(3))*E(lm(1))+...
kv11pp32*E(lm(3))*E(lm(2))+...
kv11pp33*E(lm(3))*E(lm(3)));
k56=sparse(3,3);
%Z
k61=sparse(3,3); k62=sparse(3,3);
k63=sparse(3,3); k64=sparse(3,3);
k65=kt*(Nt/Nb);
k66=-kv11+Sc*(kv1pa*F(lm(1))+kv1pb*F(lm(2))+kv1pc*F(lm(3))+...
kv1pa*E(lm(1))+kv1pb*E(lm(2))+kv1pc*E(lm(3))-...
Sc*delta1*(kv1pp11*F(lm(1))*G(lm(1))+...
kv1pp12*F(lm(1))*G(lm(2))+...
kv1pp13*F(lm(1))*G(lm(3))+...
kv1pp21*F(lm(2))*G(lm(1))+...
kv1pp22*F(lm(2))*G(lm(2))+...
kv1pp23*F(lm(2))*G(lm(3))+...
kv1pp31*F(lm(3))*G(lm(1))+...
kv1pp32*F(lm(3))*G(lm(2))+...
kv1pp33*F(lm(3))*G(lm(3))))+...
Sc*delta2*(kv1pp11*F(lm(1))*Q(lm(1))+...
kv1pp12*F(lm(1))*Q(lm(2))+...
kv1pp13*F(lm(1))*Q(lm(3))+...
kv1pp21*F(lm(2))*Q(lm(1))+...
kv1pp22*F(lm(2))*Q(lm(2))+...
kv1pp23*F(lm(2))*Q(lm(3))+...
kv1pp31*F(lm(3))*Q(lm(1))+...
kv1pp32*F(lm(3))*Q(lm(2))+...
kv1pp33*F(lm(3))*Q(lm(3)))+...
Sc*delta2*(kv1pp11*E(lm(1))*G(lm(1))+...
kv1pp12*E(lm(1))*G(lm(2))+...
kv1pp13*E(lm(1))*G(lm(3))+...
kv1pp21*E(lm(2))*G(lm(1))+...
kv1pp22*E(lm(2))*G(lm(2))+...
kv1pp23*E(lm(2))*G(lm(3))+...
kv1pp31*E(lm(3))*G(lm(1))+...
kv1pp32*E(lm(3))*G(lm(2))+...
kv1pp33*E(lm(3))*G(lm(3)))+...
Sc*delta2*(kv1pp11*Q(lm(1))*E(lm(1))+...
kv1pp12*Q(lm(1))*E(lm(2))+...
kv1pp13*Q(lm(1))*E(lm(3))+...
kv1pp21*Q(lm(2))*E(lm(1))+...
kv1pp22*Q(lm(2))*E(lm(2))+...
kv1pp23*Q(lm(2))*E(lm(3))+...
kv1pp31*Q(lm(3))*E(lm(1))+...
kv1pp32*Q(lm(3))*E(lm(2))+...
kv1pp33*Q(lm(3))*E(lm(3)))+...
Sc*delta2*(kv11pp11*F(lm(1))*F(lm(1))+...
kv11pp12*F(lm(1))*F(lm(2))+...
kv11pp13*F(lm(1))*F(lm(3))+...
kv11pp21*F(lm(2))*F(lm(1))+...
kv11pp22*F(lm(2))*F(lm(2))+...
kv11pp23*F(lm(2))*F(lm(3))+...
kv11pp31*F(lm(3))*F(lm(1))+...
kv11pp32*F(lm(3))*F(lm(2))+...
kv11pp33*F(lm(3))*F(lm(3)))+...
2*(kv11pp11*F(lm(1))*E(lm(1))+...
kv11pp12*F(lm(1))*E(lm(2))+...
kv11pp13*F(lm(1))*E(lm(3))+...
kv11pp21*F(lm(2))*E(lm(1))+...
kv11pp22*F(lm(2))*E(lm(2))+...
kv11pp23*F(lm(2))*E(lm(3))+...
kv11pp31*F(lm(3))*E(lm(1))+...
kv11pp32*F(lm(3))*E(lm(2))+...
kv11pp33*F(lm(3))*E(lm(3)))+...
Sc*delta2*(kv1pp11*E(lm(1))*E(lm(1))+...
kv11pp12*E(lm(1))*E(lm(2))+...
kv11pp13*E(lm(1))*E(lm(3))+...
kv11pp21*E(lm(2))*E(lm(1))+...
kv11pp22*E(lm(2))*E(lm(2))+...
kv11pp23*G(lm(2))*E(lm(3))+...
kv11pp31*E(lm(3))*E(lm(1))+...
kv11pp32*E(lm(3))*E(lm(2))+...
kv11pp33*E(lm(3))*E(lm(3)));
l1(lm,lm)=l1(lm,lm)+k11;
l2(lm,lm)=l2(lm,lm)+k12;
l3(lm,lm)=l3(lm,lm)+k13;
l4(lm,lm)=l4(lm,lm)+k14;
l5(lm,lm)=l5(lm,lm)+k15;
l6(lm,lm)=l6(lm,lm)+k16;
l7(lm,lm)=l7(lm,lm)+k21;
l8(lm,lm)=l8(lm,lm)+k22;
l9(lm,lm)=l9(lm,lm)+k23;
l10(lm,lm)=l10(lm,lm)+k24;
l11(lm,lm)=l11(lm,lm)+k25;
l12(lm,lm)=l12(lm,lm)+k26;
l13(lm,lm)=l13(lm,lm)+k31;
l14(lm,lm)=l14(lm,lm)+k32;
l15(lm,lm)=l15(lm,lm)+k33;
l16(lm,lm)=l16(lm,lm)+k34;
l17(lm,lm)=l17(lm,lm)+k35;
l18(lm,lm)=l18(lm,lm)+k36;
l16(lm,lm)=l19(lm,lm)+k41;
l20(lm,lm)=l20(lm,lm)+k42;
l21(lm,lm)=l21(lm,lm)+k43;
l22(lm,lm)=l22(lm,lm)+k44;
l23(lm,lm)=l23(lm,lm)+k45;
l24(lm,lm)=l24(lm,lm)+k46;
l25(lm,lm)=l25(lm,lm)+k51;
l26(lm,lm)=l26(lm,lm)+k52;
l27(lm,lm)=l27(lm,lm)+k53;
l28(lm,lm)=l28(lm,lm)+k54;
l29(lm,lm)=l29(lm,lm)+k55;
l30(lm,lm)=l30(lm,lm)+k56;
l31(lm,lm)=l31(lm,lm)+k61;
l32(lm,lm)=l32(lm,lm)+k62;
l33(lm,lm)=l33(lm,lm)+k63;
l34(lm,lm)=l34(lm,lm)+k64;
l35(lm,lm)=l35(lm,lm)+k65;
l36(lm,lm)=l36(lm,lm)+k66;
R1(lm)=R1(lm)+ f1;
R2(lm)=R2(lm)+ f2;
R3(lm)=R3(lm)+ f3;
R4(lm)=R4(lm)+ f4;
R5(lm)=R5(lm)+ f5;
R6(lm)=R6(lm)+ f6;
end
l=[l1,l2,l3,l4,l5,l6;l7,l8,l9,l10,l11,l12;l13,l14,l15,l16,l17,l18;l19,l20,l21,l22,l23,l24;l25,l26,l27,l28,l29,l30;l31,l32,l33,l34,l35,l36];
LH=zeros(14,6*nn);
RH=zeros(6*nn,14);
RC=zeros(14,14);
LH(1,1)=1;
LH(2,nn+1)=1;
LH(3,2*nn)=1;
LH(4,2*nn+1)=1;
LH(5,3*nn)=0;
LH(6,3*nn+1)=1;
LH(7,4*nn)=1;
LH(8,4*nn+1)=1;
LH(9,5*nn)=1;
LH(10,5*nn+1)=1;
LH(11,6*nn)=1;
LH(12,6*nn+1)=1;
LH(13,7*nn)=1;
LH(14,7*nn+1)=1;
RH(1,1)=1;
RH(nn+1,2)=-1;
RH(2*nn,3)=1;
RH(2*nn+1,4)=-1;
RH(3*nn,5)=1;
RH(3*nn+1,6)=-1;
RH(4*nn,7)=1;
RH(4*nn+1,8)=-1;
RH(5*nn,9)=1;
RH(5*nn+1,10)=-1;
RH(6*nn,11)=1;
RH(6*nn+1,12)=-1;
RH(7*nn,13)=1;
RH(7*nn+1,14)=-1;
%R=[R1;R2;R3;R4;R5;R6;0;1;0;(beta1*G(nn+1));0;(1+(T(nn+1)));0;(1+(H(nn+1)));0;0;0];
%R=[R1;R2;R3;R4;R5;R6;0;1;0;1;0;0;-K*G(nn+1);K*G(nn+1);1;0;0];Nb*H(nn+1)+Nt*T(nn+1)
R=[R1;R2;R3;R4;R5;R6;0;1+gamma*G(nn+1);0;0;0;0;(alpha+beta1*Q(nn+1));0;0;0;(1+(T(nn+1)/Bi));0;-(Nt/Nb)*T(nn+1);0];
% R=[R1;R2;R3;R4;R5;R6;0;1+gamma*G(nn+1);0;(alpha+beta1*Q(nn+1));0;(1+(T(nn+1)/Bi));0;1;0;1;(1+(H(nn+1)/Bi))];
%R=[R1;R2;R3;R4;R5;R6;0;(1+gamma*G(nn+1));0;(alpha+beta1*Q(nn+1));0;1;0;1;0;0;0];
l=[l,RH;LH,RC];
L=sparse(l);
% SOLVE FOR NODAL PARAMETERS
d = L\R;
F1 = [d(1:nn);d(6*nn+1);d(6*nn+2)];
G1 = [d(nn+1:2*nn);d(6*nn+3);d(6*nn+4)];
E1 = [d(2*nn+1:3*nn);d(6*nn+5);d(6*nn+6)];
Q1 = [d(3*nn+1:4*nn);d(6*nn+7);d(6*nn+8)];
T1 = [d(4*nn+1:5*nn);d(6*nn+19);d(6*nn+10);d(6*nn+11)];
H1 = [d(5*nn+1:6*nn);d(6*nn+12);d(6*nn+13);d(6*nn+14)];
end
function [kv11,kv1,kv,kv1pa,kv1pb,kv1pc,kvpa,kvpb,kvpc,...
kv1pp11,kv1pp12,kv1pp13,kv1pp21,kv1pp22,kv1pp23,kv1pp31,...
kv1pp32,kv1pp33,kv11pp11,kv11pp12,kv11pp13,kv11pp21,kv11pp22,...
kv11pp23,kv11pp31,kv11pp32,kv11pp33,...
kv1p1a,kv1p1b,kv1p1c,kt,knn] = quadraticelement(he,i)
gL = [-sqrt(3/5);0;sqrt(3/5)];
gW = [5/9,8/9,5/9 ];
kv11=sparse(3,3);
kv1=sparse(3,3);
kv=sparse(3,3);
kv1pa=sparse(3,3);
kv1pb=sparse(3,3);
kv1pc=sparse(3,3);
kvpa=sparse(3,3);
kvpb=sparse(3,3);
kvpc=sparse(3,3);
kv1pp11=sparse(3,3);
kv1pp12=sparse(3,3);
kv1pp13=sparse(3,3);
kv1pp21=sparse(3,3);
kv1pp22=sparse(3,3);
kv1pp23=sparse(3,3);
kv1pp31=sparse(3,3);
kv1pp32=sparse(3,3);
kv1pp33=sparse(3,3);
kv11pp11=sparse(3,3);
kv11pp12=sparse(3,3);
kv11pp13=sparse(3,3);
kv11pp21=sparse(3,3);
kv11pp22=sparse(3,3);
kv11pp23=sparse(3,3);
kv11pp31=sparse(3,3);
kv11pp32=sparse(3,3);
kv11pp33=sparse(3,3);
kv1p1a=sparse(3,3);
kv1p1b=sparse(3,3);
kv1p1c=sparse(3,3);
kt=sparse(3,3);
knn=sparse(3,3);
for k=1:length(gW)
s = gL(k); w = gW(k);
n = [-(1 - s)*s/2,(1-s^2),(1 + s)*s/2];
dns=[(2*s-1)/2 ,-2*s,(2*s+1)/2];
ddns=[1,-2,1];
coord=[(i-1)*he;(i-1/2)*he;i*he];
x = n*coord(:,1);
J=he/2;
dx=dns*(1/J);
ddx=ddns*(1/J)*(1/J);
kv11=kv11+J*w*dx'*dx;
kv1=kv1+J*w*n'*dx;
kv=kv+J*w*n'*n;
kv1pa=kv1pa+J*w*n'*dx*n(1);
kv1pb=kv1pb+J*w*n'*dx*n(2);
kv1pc=kv1pc+J*w*n'*dx*n(3);
kvpa=kvpa+J*w*n'*n*n(1);
kvpb=kvpb+J*w*n'*n*n(2);
kvpc=kvpc+J*w*n'*n*n(3);
kv1pp11=kv1pp11+J*w*n'*dx*n(1)*n(1);
kv1pp12=kv1pp12+J*w*n'*dx*n(1)*n(2);
kv1pp13=kv1pp13+J*w*n'*dx*n(1)*n(3);
kv1pp21=kv1pp21+J*w*n'*dx*n(2)*n(1);
kv1pp22=kv1pp22+J*w*n'*dx*n(2)*n(2);
kv1pp23=kv1pp23+J*w*n'*dx*n(2)*n(3);
kv1pp31=kv1pp31+J*w*n'*dx*n(3)*n(1);
kv1pp32=kv1pp32+J*w*n'*dx*n(3)*n(2);
kv1pp33=kv1pp33+J*w*n'*dx*n(3)*n(3);
kv11pp11=kv11pp11+J*w*n'*ddx*n(1)*n(1);
kv11pp12=kv11pp12+J*w*n'*ddx*n(1)*n(2);
kv11pp13=kv11pp13+J*w*n'*ddx*n(1)*n(3);
kv11pp21=kv11pp21+J*w*n'*ddx*n(2)*n(1);
kv11pp22=kv11pp22+J*w*n'*ddx*n(2)*n(2);
kv11pp23=kv11pp23+J*w*n'*ddx*n(2)*n(3);
kv11pp31=kv11pp31+J*w*n'*ddx*n(3)*n(1);
kv11pp32=kv11pp32+J*w*n'*ddx*n(3)*n(2);
kv11pp33=kv11pp33+J*w*n'*ddx*n(3)*n(3);
kv1p1a=kv1p1a+J*w*n'*dx*dx(1);
kv1p1b=kv1p1b+J*w*n'*dx*dx(2);
kv1p1c=kv1p1c+J*w*n'*dx*dx(3);
kt=kt+J*w*n'*ddx;
knn=knn+J*w*ddx'*ddx;
end
end
%--End
Where is my error when I run math give this
Dimensions of arrays being concatenated are
not consistent.
Error in couple130m>assembly (line 488)
l=[l,RH;LH,RC];
Error in couple130m (line 42)
[F1,G1,E1,Q1,T1,H1] =
assembly(F,G,E,Q,T,H,n,nn,he,Pr,M,Sc,gamma,...
Torsten
on 5 Nov 2023
Moved: John D'Errico
on 5 Nov 2023
At the moment, there can be two reasons if your code doesn't work: your mathematical problem is hard to solve or ill-posed or your finite-element code has errors.
So I repeat my advice:
Start setting up your problem first within "bvp4c" or "bvp5c". If you get problems or errors here, you can be quite sure that they are due to your problem formulation and not due to the method used to solve it. Then - at the time you have a working model within "bvp4c" or "bvp5c" - you might dare to program your own solver.
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)