Root Locus from equation?
19 views (last 30 days)
Show older comments
Ali Almakhmari
on 4 Nov 2023
I have this equation:
syms s u
eqn = 1472.*s.^4 - 99.2.*s.^3 -256.*s.^2.*u.^2 + 1393.*s.^2 + 2.4.*s.*u.^2 - 25.*s -24.*u.^2 + 150 == 0;
where u is speed, and s are the eigenvalues of the systems. I want to plot the root locus (real vs imaginary part of the eigenvalues) as a function of the speed but I am not sure where to start because the root locus command in MATLAB doesnt take something like this.
0 Comments
Accepted Answer
Star Strider
on 4 Nov 2023
It might if you aske it to and give it a causal system it can work with —
s = tf('s');
eqn = @(u) 1 / (1472*s^4 - 99.2*s^3 -256*s^2*u.^2 + 1393*s^2 + 2.4*s*u^2 - 25*s -24*u^2 + 150)
u = 1;
figure
rlocus(eqn(u))
grid
u = 10;
figure
rlocus(eqn(u))
grid
eqn = @(s,u) 1472.*s.^4 - 99.2.*s.^3 -256.*s.^2.*u.^2 + 1393.*s.^2 + 2.4.*s.*u.^2 - 25.*s -24.*u.^2 + 150;
figure
fimplicit(eqn, [[-1 1]*10 [-1 1]*10])
grid
I would not consider that to be a root locus plot, however that is likely the only way to work with it as originally stated.
.
0 Comments
More Answers (1)
Paul
on 15 Nov 2024 at 3:39
In order to use rlocus, we need to get the characteristic equation in a form of 1 + u^2*N(s)/D(s) = 0.
Start with the equation
syms s u
eqn = 1472.*s.^4 - 99.2.*s.^3 -256.*s.^2.*u.^2 + 1393.*s.^2 + 2.4.*s.*u.^2 - 25.*s -24.*u.^2 + 150 == 0;
Sub in u2 = u^2
syms u2
eqn2 = subs(eqn,u^2,u2)
Find the coefficients of u2 and 1
[C,T] = coeffs(lhs(eqn2),u2,'All')
Now eqn can be expressed as 1 + u2*N(s)/D(s) = 0, where
N(s) = C(1);
D(s) = C(2);
Convert to numeric
N = sym2poly(N(s));
D = sym2poly(D(s));
and plot the root locus. Here, the root locus "gain" is u^2
figure
rlocus(tf(N,D))
We can verify by first having rlocus return the roots of the eqn for each value of u^2
[r,u2] = rlocus(tf(N,D));
and then verify that eqn is satisfied for the first (or second/third/fourth) root returned for the values of u^2.
figure
plot(abs(double(subs(lhs(eqn),[s,u^2],{r(1,:).',u2.'}))))
0 Comments
See Also
Categories
Find more on Classical Control Design in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!