Doubt in Coupled Ode

2 views (last 30 days)
Susmita Panda
Susmita Panda on 15 Nov 2023
Commented: Torsten on 16 Nov 2023
I have written a code for coupled ode using ode45; however my results seems errornous when compared with analytical results:
%% Analytical
L=24;
A=9;
Iz=2.43;
J=21.18;
E=33.2e9;
EI=E*Iz;
rho=2.4e4;
volume=A*L;
m=(rho*A);
Fv=29.9e4;
theta=30*(pi/180);
R=L/theta;
v=40;
mu=0.2;
G=E/(2*(1+mu));
GJ=G*J;
g=10;
a1=(1/m)*(pi/L)^2*(EI*((pi/L)^2)+(GJ/(R^2)));
a2=(1/(m*R))*((pi/L)^2)*(EI+GJ);
b1=-(1/(rho*J))*((EI/R^2)+(GJ*((pi/L)^2)));
b2=-(1/(rho*J))*(1/R)*((pi/L)^2)*(EI+GJ);
wv=32.10; %% book formula provided in snip shot with constants
% factor_1=sqrt(((a1-b1)^2)+(4*a2*b2));
% wv=sqrt((a1+b1+factor_1)/2) ;% however I am getting different with my constants
g=10;
t=0.01:0.01:(L/v);
Sv=(pi*v)/(L*wv);
beta=(b1-(pi*v/L)^2)/(b1+a1-wv^2-(pi*v/L)^2);
xi=sin(pi*v*t/L)-(Sv*sin(wv*t));
u_deflect=-((2*Fv*g)/(m*L))*(1/wv^2)*(1/(1-Sv^2))*beta*xi;
figure();plot(t,u_deflect,'o-');title('Validation');
My code is:
%% Analysis using ode45
tspan_1=[0:0.001:0.6];%time range
y0_1=[0;0;0;0];%initial conditions f
[t1,y1]=ode45(@diffeqn11,tspan_1,y0_1);
%plot displacement
figure(1)
plot(t1, y1(:,1), 'r', 'LineWidth',2);title('Displacement of the beam');
hold on
plot(t1, y1(:,3), 'b', 'LineWidth',2);
%plot velocity_forced+free
figure(2)
plot(t1, y1(:,2), 'g', 'LineWidth',2);title('Velocity of the beam');
figure(3)
plot(t1, y1(:,4), 'r', 'LineWidth',2);
function f= diffeqn11(t,y)
L=24;
A=9;
Iz=2.43;
J=21.18;
E=33.2e9;
EI=E*Iz;
rho=2.4e4;
volume=A*L;
m=(rho*A);
Fv=29.9e4;
theta=30*(pi/180);
R=L/theta;
v=40;
mu=0.2;
G=E/(2*(1+mu));
GJ=G*J;
g=10;
a1=(1/m)*(pi/L)^2*(EI*((pi/L)^2)+(GJ/(R^2)));
a2=(1/(m*R))*((pi/L)^2)*(EI+GJ);
b1=-(1/(rho*J))*((EI/R^2)+(GJ*((pi/L)^2)));
b2=-(1/(rho*J))*(1/R)*((pi/L)^2)*(EI+GJ);
f=zeros(4,1);
f(1)=y(2);
f(2)=((2*Fv)/(m*L))*sin((pi*v*t)/L)-(a1*y(1))-(a2*y(3));
f(3)=y(4);
f(4)=-(b1*y(3))-(b2*y(1));
end
  1 Comment
Torsten
Torsten on 16 Nov 2023
Either the solution you took from the book is wrong or your differential equations are wrong.

Sign in to comment.

Accepted Answer

Torsten
Torsten on 15 Nov 2023
Edited: Torsten on 15 Nov 2023
Your code is correct, but it seems there is a singularity near 0.32....
syms t x(t) y(t) a1 b1 a2 b2 Constant
eqn1 = diff(x,t,2)+a1*x+a2*y==Constant*sin(0.5*t);
eqn2 = diff(y,t,2)+b1*y+b2*x==0;
Dx = diff(x,t);
Dy = diff(y,t);
sol = dsolve([eqn1,eqn2],[x(0)==0,y(0)==0,Dx(0)==0,Dy(0)==0]);
sol.x
ans = 
sol.y
ans = 
figure(1)
fplot(subs(sol.x,[a1 a2 b1 b2 Constant],[120.7217,1.3587e+06,-4.4643e+06,-1.2327e+05,0.1154]),[0 0.6])
figure(2)
fplot(subs(sol.y,[a1 a2 b1 b2 Constant],[120.7217,1.3587e+06,-4.4643e+06,-1.2327e+05,0.1154]),[0 0.6])
Note that the eigenvalues of the characteristic polynomial for the system are tremendous:
a1 = 120.7217;
a2 = 1.3587e+06;
b1 = -4.4643e+06;
b2 = -1.2327e+05;
M = [0 0 1 0;0 0 0 1;-a1 -a2 0 0;-b2 -b1 0 0];
eig(M)
ans = 4×1
1.0e+03 * -2.1039 2.1039 0.1942 -0.1942
  1 Comment
Susmita Panda
Susmita Panda on 16 Nov 2023
You are correct sir. I must check the values of constants.

Sign in to comment.

More Answers (1)

Sam Chak
Sam Chak on 16 Nov 2023
Your 4th-order coupled system has two eigenvalues with positive real parts. Therefore, in theory, the state responses will diverge when the system is forced.
% parameters
a1 = 120.7217;
a2 = 1.3587e+06;
b1 = -4.4643e+06;
b2 = -1.2327e+05;
% state matrix
A = [ 0 1 0 0;
-a1 0 -a2 0;
0 0 0 1;
-b2 0 -b1 0];
% check eigenvalues
eig(A)
ans = 4×1
1.0e+03 * 2.1039 -2.1039 -0.1942 0.1942
  2 Comments
Sam Chak
Sam Chak on 16 Nov 2023
Please note that in your beam-coupled system, there is typically no damping considered. However, in the real physical world, damping components exist. As a structural engineer, you can either incorporate other beams with stabilizing properties, or measure the deflections of existing beams and then counteract destabilizing vibration modes.
%% Analysis using ode45
tspan_1 = [0:0.001:4*pi]; % time range
y0_1 = [0; 0; 0; 0]; % initial conditions f
options = odeset('RelTol', 1e-8, 'AbsTol', 1e-8);
[t1, y1] = ode45(@diffeqn11, tspan_1, y0_1, options);
% plot displacement
figure(1)
plot(t1/pi, y1(:,1:2:3)); grid on,
title('Displacements of the beams'), xlabel('t/\pi')
legend('y_{1}', 'y_{3}', 'location', 'SE')
% A pair of Beam couples
function f = diffeqn11(t, y)
% parameters
a1 = 120.7217;
a2 = 1.3587e+06;
b1 = -4.4643e+06;
b2 = -1.2327e+05;
Constant= 0.1154;
% measure the deflections and velocities, and feed them back into the
% system in the same channel, where the sinusoidal force is injected.
k1 = 10562734.7949266;
k2 = 4596.24524333348;
k3 = 382536034.238245;
k4 = 181690.721406603;
K = [k1 k2 k3 k4];
f = zeros(4, 1);
u = Constant*sin(0.5*t) - K*y;
f(1) = 0*y(1) + 1*y(2) + 0*y(3) + 0*y(4);
f(2) = - a1*y(1) + 0*y(2) - a2*y(3) + 0*y(4) + u;
f(3) = 0*y(1) + 0*y(2) + 0*y(3) + 1*y(4);
f(4) = - b2*y(1) + 0*y(2) - b1*y(3) + 0*y(4);
end
Susmita Panda
Susmita Panda on 16 Nov 2023
Edited: Susmita Panda on 16 Nov 2023
Thank you for the idea sir; however the problem in my case I am getting solution using analytical solution and not getting using ode45. I am also supposing that my constants are errorneous. I should provide the actual code and actual values of constant instead of demo code. Sir do check my revised question.

Sign in to comment.

Tags

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!