How can I simplify this expression using "abs" function?

15 views (last 30 days)
  8 Comments
Walter Roberson
Walter Roberson on 20 Nov 2023
I think in the Wolfram output that the # stand in for the variable whose value has to be found to make the expression zero

Sign in to comment.

Answers (2)

Star Strider
Star Strider on 20 Nov 2023
This seems to work —
syms n k
Expr = 7/6 * symsum((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^3 - k)-(k*(k+1)*(2*k+1))/6, k, 1, n-1)
Expr = 
Expr = simplify(Expr, 500)
Expr = 
.
  5 Comments
Star Strider
Star Strider on 20 Nov 2023
Edited: Star Strider on 20 Nov 2023
Edited —
syms n k
Expr = symsum(abs((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k)/6-(k*(k+1)*(2*k+1))/6), k, 1, n-1)
Expr = 
Expr = simplify(Expr, 400)
Expr = 
.

Sign in to comment.


Torsten
Torsten on 20 Nov 2023
Edited: Torsten on 20 Nov 2023
You must determine the value for k0 where the expression
2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)
changes sign from positive to negative. Then you can add
1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
from k = 1 to k = floor(k0) and add
-1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)))
from k = floor(k0)+1 to k = n-1.
syms n k
p = simplify(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
p = 
s = solve(p,k,'MaxDegree',3)
s = 
result = simplify(1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,1,floor(s(1)))-...
1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,floor(s(1))+1,n-1))
result = 
subs(result,n,13)
ans = 
6444
k = 1:12;
n = 13;
expr = 1/6*abs(2*n^3 + 3*n^2 + n - 2*k.^3 - 3*k.^2 - k - k.*(k+1).*(2*k+1))
expr = 1×12
817 809 791 759 709 637 539 411 249 49 193 481
sum(expr)
ans = 6444

Categories

Find more on Mathematics in Help Center and File Exchange

Tags

Products


Release

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!