You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Any availiable function to find the Taylor series of multi variables function in Matlab?
10 views (last 30 days)
Show older comments
Mehdi
on 29 Nov 2023
I am looking for a ready to use function in Matlab to find the Taylor expansion of a functions with two or more variables (e.g. tanh(x^7*y^9^z^5)). Please let me know if there is such function in Matlab.
Accepted Answer
Torsten
on 29 Nov 2023
Moved: Torsten
on 29 Nov 2023
syms x y z
f(x,y,z) = tanh(x^7*y^9*z^5);
taylor(f,[x y z],[1 1 1],'Order',2)
8 Comments
Mehdi
on 30 Nov 2023
Edited: Mehdi
on 30 Nov 2023
what is problem with my function where I receive 1 instead of taylor expansion?
syms xx yy
k=100;
f=- vpa(2146702909675882809503682033933399905335826325*xx^9*yy^9)/11150372599265311570767859136324180752990208 + (1587967252519403636411870604735180043125989625*xx^9*yy^8)/5575186299632655785383929568162090376495104 + (17639360745426635511855086638766468926126459875*xx^9*yy^7)/44601490397061246283071436545296723011960832 - (431284328058774504067793959976795724976545555*xx^9*yy^6)/696898287454081973172991196020261297061888 - (12993287722661922638788467553649639108437064835*xx^9*yy^5)/44601490397061246283071436545296723011960832 + (1206817075246069632318716986669541278160772775*xx^9*yy^4)/2787593149816327892691964784081045188247552 + (5138909461003175489938484170634052266819688725*xx^9*yy^3)/44601490397061246283071436545296723011960832 - (72716798311978341010558827315982986191821905*xx^9*yy^2)/696898287454081973172991196020261297061888 - (1197236208181378637639504269592639035279087665*xx^9*yy)/44601490397061246283071436545296723011960832 + (30423874459994412977383604476886160940746185*xx^9)/5575186299632655785383929568162090376495104 + (8094790880015327525694605814920739418439287725*xx^8*yy^9)/2787593149816327892691964784081045188247552 - (285743684916570536194588196441080828723328178675*xx^8*yy^8)/89202980794122492566142873090593446023921664 - (6686861200533386632065997818427854246215113305*xx^8*yy^7)/696898287454081973172991196020261297061888 + (157001869330425518481531763580902779395436599415*xx^8*yy^6)/22300745198530623141535718272648361505980416 + (15350689937843699961175740256400109996121380375*xx^8*yy^5)/1393796574908163946345982392040522594123776 - (206512033439850904054937113093163624192322042825*xx^8*yy^4)/44601490397061246283071436545296723011960832 - (3479476522267890993628796487849129439635143625*xx^8*yy^3)/696898287454081973172991196020261297061888 + (18712604797880071317805036942199122521197359575*xx^8*yy^2)/22300745198530623141535718272648361505980416 + (1869246621670048362557342074310025153518449965*xx^8*yy)/2787593149816327892691964784081045188247552 - (4089215965643055747590786827106386135115380275*xx^8)/89202980794122492566142873090593446023921664 + (216255546256559295251079313253452049445763455*xx^7*yy^9)/348449143727040986586495598010130648530944 - (868641325364973493898126340263842300348545855*xx^7*yy^8)/1393796574908163946345982392040522594123776 - (14785537121406447202257499440081382142298519099*xx^7*yy^7)/11150372599265311570767859136324180752990208 + (116540829629507365267125159526451609264014215*xx^7*yy^6)/87112285931760246646623899502532662132736 + (11170081785792631086653879206603595320491089331*xx^7*yy^5)/11150372599265311570767859136324180752990208 - (652299342907430898149182084981866414949696905*xx^7*yy^4)/696898287454081973172991196020261297061888 - (4303517165264733669855129139552505045324631645*xx^7*yy^3)/11150372599265311570767859136324180752990208 + (10578825782023300845453772557509072093336001*xx^7*yy^2)/43556142965880123323311949751266331066368 + (998213736763384913910074759047227544847506773*xx^7*yy)/11150372599265311570767859136324180752990208 - (29946355461657315300256240552185966952551471*xx^7)/1393796574908163946345982392040522594123776 - (1277356081222180962342283013232991241852904465*xx^6*yy^9)/696898287454081973172991196020261297061888 + (57447439083834576362467553225131370438848237035*xx^6*yy^8)/22300745198530623141535718272648361505980416 + (1173296429365947392287371443632107462978009165*xx^6*yy^7)/174224571863520493293247799005065324265472 - (23673134207774883972271882396704370580007933039*xx^6*yy^6)/5575186299632655785383929568162090376495104 - (2937701213452088192123555543440803264914467299*xx^6*yy^5)/348449143727040986586495598010130648530944 + (14159347676475748959036290080103848146860867025*xx^6*yy^4)/11150372599265311570767859136324180752990208 + (749877940244270735637721966049124917356845885*xx^6*yy^3)/174224571863520493293247799005065324265472 + (782685832362921584689673760969891945953777553*xx^6*yy^2)/5575186299632655785383929568162090376495104 - (539977758872163289054492124375185771143918033*xx^6*yy)/696898287454081973172991196020261297061888 + (5795161625895678368156852916105373987594511979*xx^6)/22300745198530623141535718272648361505980416 - (5023626067733175609651265492842895195168362165*xx^5*yy^9)/5575186299632655785383929568162090376495104 + (2207379816207475241162406248223006569040862935*xx^5*yy^8)/2787593149816327892691964784081045188247552 + (47950825635610780986659544491454706340397108297*xx^5*yy^7)/22300745198530623141535718272648361505980416 - (588774433706353379897742534304221654039246663*xx^5*yy^6)/348449143727040986586495598010130648530944 - (44608078263668464626393951292252447406629869273*xx^5*yy^5)/22300745198530623141535718272648361505980416 + (1613038118657167505912389296857854524947676825*xx^5*yy^4)/1393796574908163946345982392040522594123776 + (23570688854853763073042723518782612790921757535*xx^5*yy^3)/22300745198530623141535718272648361505980416 - (113510140727511300460098712979462156361337425*xx^5*yy^2)/348449143727040986586495598010130648530944 - (6817973449093402642853212701104432585928821163*xx^5*yy)/22300745198530623141535718272648361505980416 + (184838927094446995029201369223921105703104647*xx^5)/2787593149816327892691964784081045188247552 + (31380186488931551370058361496245928395816772575*xx^4*yy^9)/1393796574908163946345982392040522594123776 - (1758702445038817232726176779731884586549332868025*xx^4*yy^8)/44601490397061246283071436545296723011960832 - (33218490572036542393092937176469859040906121155*xx^4*yy^7)/348449143727040986586495598010130648530944 + (843981485493394825713526892530506348990296828805*xx^4*yy^6)/11150372599265311570767859136324180752990208 + (94251624724512021502035994822030873708141367565*xx^4*yy^5)/696898287454081973172991196020261297061888 - (765302392604646459013613426858243443467023490875*xx^4*yy^4)/22300745198530623141535718272648361505980416 - (26051472095770585704126329008135447818638784275*xx^4*yy^3)/348449143727040986586495598010130648530944 - (9551461763890264957289963973620923748598225435*xx^4*yy^2)/11150372599265311570767859136324180752990208 + (17196469545705046799299985950707233685621881055*xx^4*yy)/1393796574908163946345982392040522594123776 - (48412290717709997717153300332089796247538326265*xx^4)/44601490397061246283071436545296723011960832 + (941109349474535911451616661821106567867537125*xx^3*yy^9)/1393796574908163946345982392040522594123776 - (1174244552874873223035231031480900497934023075*xx^3*yy^8)/1393796574908163946345982392040522594123776 - (20361225581568567923686744589522827658576624955*xx^3*yy^7)/11150372599265311570767859136324180752990208 + (39584968580329795728950940517214770307434335*xx^3*yy^6)/21778071482940061661655974875633165533184 + (23458516464006675395891679247259419002768896835*xx^3*yy^5)/11150372599265311570767859136324180752990208 - (851688199122087410134053760306093104684621525*xx^3*yy^4)/696898287454081973172991196020261297061888 - (15637727799880882327290754576104647826715168925*xx^3*yy^3)/11150372599265311570767859136324180752990208 + (29341459645317546529685572705520876577051855*xx^3*yy^2)/87112285931760246646623899502532662132736 + (5011420945327438626354964312196465908094234685*xx^3*yy)/11150372599265311570767859136324180752990208 - (125283292999146417157156696376640452081866835*xx^3)/1393796574908163946345982392040522594123776 - (35643509355104072817665294345590475660747146425*xx^2*yy^9)/696898287454081973172991196020261297061888 + (1872760743346397986120124413411813119412045269675*xx^2*yy^8)/22300745198530623141535718272648361505980416 + (36390552938954376406834468187448925576623439893*xx^2*yy^7)/174224571863520493293247799005065324265472 - (930314746723434588666177195703059675161177190255*xx^2*yy^6)/5575186299632655785383929568162090376495104 - (100809382380090436397261413740272360141145204891*xx^2*yy^5)/348449143727040986586495598010130648530944 + (929769947314964740179937673332890647768037984465*xx^2*yy^4)/11150372599265311570767859136324180752990208 + (27287439738914744607616926917914225474665410565*xx^2*yy^3)/174224571863520493293247799005065324265472 - (11540959773500599403794316292492996114189538863*xx^2*yy^2)/5575186299632655785383929568162090376495104 - (17449701902039745490242163912540688306429882361*xx^2*yy)/696898287454081973172991196020261297061888 + (35122173917479363738100862234581108137514304171*xx^2)/22300745198530623141535718272648361505980416 - (2255097230860381206152749351617455809672044745*xx*yy^9)/11150372599265311570767859136324180752990208 + (2168816628024980374461014350770096009019357665*xx*yy^8)/5575186299632655785383929568162090376495104 + (27046038795224386955728969793334632924015008227*xx*yy^7)/44601490397061246283071436545296723011960832 - (590212436135125327923049635849260481403670583*xx*yy^6)/696898287454081973172991196020261297061888 - (36304948749180317956941914133403396762716230691*xx*yy^5)/44601490397061246283071436545296723011960832 + (1583056855557692418384969876461998197073089695*xx*yy^4)/2787593149816327892691964784081045188247552 + (27484692689867334306687311759874973819976026005*xx*yy^3)/44601490397061246283071436545296723011960832 - (104255809907916433055923335622932126645726549*xx*yy^2)/696898287454081973172991196020261297061888 - (9205355621994819342146712860571987786619361601*xx*yy)/44601490397061246283071436545296723011960832 + (220816865194317615868568855814620996552449073*xx)/5575186299632655785383929568162090376495104 + (76828297887427851822683521168415270943435162685*yy^9)/2787593149816327892691964784081045188247552 - (3917684154726736823398471536296978037714283086195*yy^8)/89202980794122492566142873090593446023921664 - (77131555128675321096947207038878222843991869993*yy^7)/696898287454081973172991196020261297061888 + (1970986683407627074325019523003479974617451789943*yy^6)/22300745198530623141535718272648361505980416 + (211134394987302797546644924545169826774270265159*yy^5)/1393796574908163946345982392040522594123776 - (2038600361316622246653155899145012259420048867785*yy^4)/44601490397061246283071436545296723011960832 - (56566850002827011453690682806041619180254985625*yy^3)/696898287454081973172991196020261297061888 + (43423414494451507811145033075147441881593811799*yy^2)/22300745198530623141535718272648361505980416 + (35696532930567486560276536615522532283474689213*yy)/2787593149816327892691964784081045188247552 - 62755544772437504320590342390381422715234113715/89202980794122492566142873090593446023921664;
g=0.5*(1+tanh(k*f));
vpa(taylor(g,[xx yy],[.1 .1],'Order',8))
ans =
1.0
Torsten
on 30 Nov 2023
From the result I would conclude that the derivatives up to order 8 are (numerically) 0 at [0.1,0.1].
Walter Roberson
on 1 Dec 2023
syms xx yy
k=100;
f=- str2sym('(2146702909675882809503682033933399905335826325*xx^9*yy^9)/11150372599265311570767859136324180752990208 + (1587967252519403636411870604735180043125989625*xx^9*yy^8)/5575186299632655785383929568162090376495104 + (17639360745426635511855086638766468926126459875*xx^9*yy^7)/44601490397061246283071436545296723011960832 - (431284328058774504067793959976795724976545555*xx^9*yy^6)/696898287454081973172991196020261297061888 - (12993287722661922638788467553649639108437064835*xx^9*yy^5)/44601490397061246283071436545296723011960832 + (1206817075246069632318716986669541278160772775*xx^9*yy^4)/2787593149816327892691964784081045188247552 + (5138909461003175489938484170634052266819688725*xx^9*yy^3)/44601490397061246283071436545296723011960832 - (72716798311978341010558827315982986191821905*xx^9*yy^2)/696898287454081973172991196020261297061888 - (1197236208181378637639504269592639035279087665*xx^9*yy)/44601490397061246283071436545296723011960832 + (30423874459994412977383604476886160940746185*xx^9)/5575186299632655785383929568162090376495104 + (8094790880015327525694605814920739418439287725*xx^8*yy^9)/2787593149816327892691964784081045188247552 - (285743684916570536194588196441080828723328178675*xx^8*yy^8)/89202980794122492566142873090593446023921664 - (6686861200533386632065997818427854246215113305*xx^8*yy^7)/696898287454081973172991196020261297061888 + (157001869330425518481531763580902779395436599415*xx^8*yy^6)/22300745198530623141535718272648361505980416 + (15350689937843699961175740256400109996121380375*xx^8*yy^5)/1393796574908163946345982392040522594123776 - (206512033439850904054937113093163624192322042825*xx^8*yy^4)/44601490397061246283071436545296723011960832 - (3479476522267890993628796487849129439635143625*xx^8*yy^3)/696898287454081973172991196020261297061888 + (18712604797880071317805036942199122521197359575*xx^8*yy^2)/22300745198530623141535718272648361505980416 + (1869246621670048362557342074310025153518449965*xx^8*yy)/2787593149816327892691964784081045188247552 - (4089215965643055747590786827106386135115380275*xx^8)/89202980794122492566142873090593446023921664 + (216255546256559295251079313253452049445763455*xx^7*yy^9)/348449143727040986586495598010130648530944 - (868641325364973493898126340263842300348545855*xx^7*yy^8)/1393796574908163946345982392040522594123776 - (14785537121406447202257499440081382142298519099*xx^7*yy^7)/11150372599265311570767859136324180752990208 + (116540829629507365267125159526451609264014215*xx^7*yy^6)/87112285931760246646623899502532662132736 + (11170081785792631086653879206603595320491089331*xx^7*yy^5)/11150372599265311570767859136324180752990208 - (652299342907430898149182084981866414949696905*xx^7*yy^4)/696898287454081973172991196020261297061888 - (4303517165264733669855129139552505045324631645*xx^7*yy^3)/11150372599265311570767859136324180752990208 + (10578825782023300845453772557509072093336001*xx^7*yy^2)/43556142965880123323311949751266331066368 + (998213736763384913910074759047227544847506773*xx^7*yy)/11150372599265311570767859136324180752990208 - (29946355461657315300256240552185966952551471*xx^7)/1393796574908163946345982392040522594123776 - (1277356081222180962342283013232991241852904465*xx^6*yy^9)/696898287454081973172991196020261297061888 + (57447439083834576362467553225131370438848237035*xx^6*yy^8)/22300745198530623141535718272648361505980416 + (1173296429365947392287371443632107462978009165*xx^6*yy^7)/174224571863520493293247799005065324265472 - (23673134207774883972271882396704370580007933039*xx^6*yy^6)/5575186299632655785383929568162090376495104 - (2937701213452088192123555543440803264914467299*xx^6*yy^5)/348449143727040986586495598010130648530944 + (14159347676475748959036290080103848146860867025*xx^6*yy^4)/11150372599265311570767859136324180752990208 + (749877940244270735637721966049124917356845885*xx^6*yy^3)/174224571863520493293247799005065324265472 + (782685832362921584689673760969891945953777553*xx^6*yy^2)/5575186299632655785383929568162090376495104 - (539977758872163289054492124375185771143918033*xx^6*yy)/696898287454081973172991196020261297061888 + (5795161625895678368156852916105373987594511979*xx^6)/22300745198530623141535718272648361505980416 - (5023626067733175609651265492842895195168362165*xx^5*yy^9)/5575186299632655785383929568162090376495104 + (2207379816207475241162406248223006569040862935*xx^5*yy^8)/2787593149816327892691964784081045188247552 + (47950825635610780986659544491454706340397108297*xx^5*yy^7)/22300745198530623141535718272648361505980416 - (588774433706353379897742534304221654039246663*xx^5*yy^6)/348449143727040986586495598010130648530944 - (44608078263668464626393951292252447406629869273*xx^5*yy^5)/22300745198530623141535718272648361505980416 + (1613038118657167505912389296857854524947676825*xx^5*yy^4)/1393796574908163946345982392040522594123776 + (23570688854853763073042723518782612790921757535*xx^5*yy^3)/22300745198530623141535718272648361505980416 - (113510140727511300460098712979462156361337425*xx^5*yy^2)/348449143727040986586495598010130648530944 - (6817973449093402642853212701104432585928821163*xx^5*yy)/22300745198530623141535718272648361505980416 + (184838927094446995029201369223921105703104647*xx^5)/2787593149816327892691964784081045188247552 + (31380186488931551370058361496245928395816772575*xx^4*yy^9)/1393796574908163946345982392040522594123776 - (1758702445038817232726176779731884586549332868025*xx^4*yy^8)/44601490397061246283071436545296723011960832 - (33218490572036542393092937176469859040906121155*xx^4*yy^7)/348449143727040986586495598010130648530944 + (843981485493394825713526892530506348990296828805*xx^4*yy^6)/11150372599265311570767859136324180752990208 + (94251624724512021502035994822030873708141367565*xx^4*yy^5)/696898287454081973172991196020261297061888 - (765302392604646459013613426858243443467023490875*xx^4*yy^4)/22300745198530623141535718272648361505980416 - (26051472095770585704126329008135447818638784275*xx^4*yy^3)/348449143727040986586495598010130648530944 - (9551461763890264957289963973620923748598225435*xx^4*yy^2)/11150372599265311570767859136324180752990208 + (17196469545705046799299985950707233685621881055*xx^4*yy)/1393796574908163946345982392040522594123776 - (48412290717709997717153300332089796247538326265*xx^4)/44601490397061246283071436545296723011960832 + (941109349474535911451616661821106567867537125*xx^3*yy^9)/1393796574908163946345982392040522594123776 - (1174244552874873223035231031480900497934023075*xx^3*yy^8)/1393796574908163946345982392040522594123776 - (20361225581568567923686744589522827658576624955*xx^3*yy^7)/11150372599265311570767859136324180752990208 + (39584968580329795728950940517214770307434335*xx^3*yy^6)/21778071482940061661655974875633165533184 + (23458516464006675395891679247259419002768896835*xx^3*yy^5)/11150372599265311570767859136324180752990208 - (851688199122087410134053760306093104684621525*xx^3*yy^4)/696898287454081973172991196020261297061888 - (15637727799880882327290754576104647826715168925*xx^3*yy^3)/11150372599265311570767859136324180752990208 + (29341459645317546529685572705520876577051855*xx^3*yy^2)/87112285931760246646623899502532662132736 + (5011420945327438626354964312196465908094234685*xx^3*yy)/11150372599265311570767859136324180752990208 - (125283292999146417157156696376640452081866835*xx^3)/1393796574908163946345982392040522594123776 - (35643509355104072817665294345590475660747146425*xx^2*yy^9)/696898287454081973172991196020261297061888 + (1872760743346397986120124413411813119412045269675*xx^2*yy^8)/22300745198530623141535718272648361505980416 + (36390552938954376406834468187448925576623439893*xx^2*yy^7)/174224571863520493293247799005065324265472 - (930314746723434588666177195703059675161177190255*xx^2*yy^6)/5575186299632655785383929568162090376495104 - (100809382380090436397261413740272360141145204891*xx^2*yy^5)/348449143727040986586495598010130648530944 + (929769947314964740179937673332890647768037984465*xx^2*yy^4)/11150372599265311570767859136324180752990208 + (27287439738914744607616926917914225474665410565*xx^2*yy^3)/174224571863520493293247799005065324265472 - (11540959773500599403794316292492996114189538863*xx^2*yy^2)/5575186299632655785383929568162090376495104 - (17449701902039745490242163912540688306429882361*xx^2*yy)/696898287454081973172991196020261297061888 + (35122173917479363738100862234581108137514304171*xx^2)/22300745198530623141535718272648361505980416 - (2255097230860381206152749351617455809672044745*xx*yy^9)/11150372599265311570767859136324180752990208 + (2168816628024980374461014350770096009019357665*xx*yy^8)/5575186299632655785383929568162090376495104 + (27046038795224386955728969793334632924015008227*xx*yy^7)/44601490397061246283071436545296723011960832 - (590212436135125327923049635849260481403670583*xx*yy^6)/696898287454081973172991196020261297061888 - (36304948749180317956941914133403396762716230691*xx*yy^5)/44601490397061246283071436545296723011960832 + (1583056855557692418384969876461998197073089695*xx*yy^4)/2787593149816327892691964784081045188247552 + (27484692689867334306687311759874973819976026005*xx*yy^3)/44601490397061246283071436545296723011960832 - (104255809907916433055923335622932126645726549*xx*yy^2)/696898287454081973172991196020261297061888 - (9205355621994819342146712860571987786619361601*xx*yy)/44601490397061246283071436545296723011960832 + (220816865194317615868568855814620996552449073*xx)/5575186299632655785383929568162090376495104 + (76828297887427851822683521168415270943435162685*yy^9)/2787593149816327892691964784081045188247552 - (3917684154726736823398471536296978037714283086195*yy^8)/89202980794122492566142873090593446023921664 - (77131555128675321096947207038878222843991869993*yy^7)/696898287454081973172991196020261297061888 + (1970986683407627074325019523003479974617451789943*yy^6)/22300745198530623141535718272648361505980416 + (211134394987302797546644924545169826774270265159*yy^5)/1393796574908163946345982392040522594123776 - (2038600361316622246653155899145012259420048867785*yy^4)/44601490397061246283071436545296723011960832 - (56566850002827011453690682806041619180254985625*yy^3)/696898287454081973172991196020261297061888 + (43423414494451507811145033075147441881593811799*yy^2)/22300745198530623141535718272648361505980416 + (35696532930567486560276536615522532283474689213*yy)/2787593149816327892691964784081045188247552 - 62755544772437504320590342390381422715234113715/89202980794122492566142873090593446023921664')
f =
g=0.5*(1+tanh(k*f));
fsurf(g, [-1 1 -1 1])
You have steep boundaries in one direction. You are not going to be able to get a decent approximation without using a lot of terms.
Mehdi
on 1 Dec 2023
suppose f=x. Still could not estimate f even with a lot of terms.
syms x
k=10;
f=x;
g=0.5*(1+tanh(k*f));
fplot(g,[-1,1])
fplot((taylor(g,[x],[0],'Order',88)),[-1,1])
d
Torsten
on 1 Dec 2023
what do you recommend to get a good estimation of my function in -1<x,y<1?
Why not just evaluating the function ?
Mehdi
on 1 Dec 2023
I need to estimate this function (g) with polynomials so the Taylor series expansion is the best choice, but unsuccessful yet.
Torsten
on 1 Dec 2023
Edited: Torsten
on 1 Dec 2023
suppose f=x. Still could not estimate f even with a lot of terms.
The Taylor series for tanh(x) converges for |x| < pi/2, and you will need many terms to make it converge when you approach the boundaries.
If you change your command to
fplot((taylor(g,[x],[0],'Order',88)),[-0.15,0.15])
you will see that the behaviour of the Taylor approximation near 0 is correct.
More Answers (1)
the cyclist
on 29 Nov 2023
syms x y z;
f = tanh(x^7*y^9*z^5) % I think you may have had a typo or two in your function, so check this
f =
taylor_series = taylor(f, [x, y, z], 'Order', 127);
disp(taylor_series);
See Also
Categories
Find more on Assumptions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)