Unable to solve the collocation equations -- a singular Jacobian encountered.
3 views (last 30 days)
Show older comments
function Sc_1
% Define constants
phi = 0.02;
R_s = 1738;
R_f = 1053;
S_s = 230000000;
S_f = 0.18;
Cp_s = 1046.7;
Cp_f = 3594;
K_s = 156;
K_f = 0.492;
We = 0.3;
Ha = 0.3;
A = 0.1;
Pr = 4;
Q_star = 0.1;
Ec = 0.1;
s_1 = 0.1;
Sc = 0.3;
s_2 = 0.1;
Kr = 0.2;
s_3 =0.1;
Lb = 0.3;
Pe = 0.1;
delta_1 = 0.1;
k_prime = 0.2;
k_2prime = 0.1;
M_0 = 0.6;
alpha = pi/2;
n = -0.803;
B_2 = (1 - phi)^-2.5;
B_1 = (1-phi)+phi*(R_s/R_f);
B_4 = ((1-phi)+phi*((R_s*Cp_s)/(R_f*Cp_f)));
B_3 = ((S_s+2*S_f)-2*phi*(S_f-S_s))/((S_s+2*S_f)+phi*(S_f-S_s));
B_5 = ((K_s+2*K_f)-2*phi*(K_f-K_s))/((K_s+2*K_f)+phi*(K_f-K_s));
% Solve the BVP
% Create an options structure with specified tolerances and a Jacobian function
x = linspace(0, 1, 10);
options = bvpset('RelTol',1e-6,'AbsTol',1e-6);
solinit = bvpinit(x, [1 1 1 0 0 0 0 0 0]);
sol = bvp4c(@bvpexam2, @bcfun, solinit, options);
x_vals = sol.x;
y_vals = sol.y;
% Plot the solutions
figure(1);
plot(x_vals, y_vals(2,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
figure(2);
plot(x_vals, y_vals(4,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
figure(3);
plot(x_vals, y_vals(6,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
figure(4);
plot(x_vals, y_vals(8,:), 'LineWidth', 1.3);
hold on; % Keep the plot for next iterations
% Boundary and ODE functions
function res = bcfun(ya, yb)
res = [Pr*ya(1) + (B_5/B_1)*M_0*ya(5)-0;
ya(2) - 1;
ya(4)+k_prime*ya(5)-0;
ya(6)+k_2prime*ya(7)-0;
ya(8)-0;
yb(2) - A;
yb(4) - (1 - s_1);
yb(6) - (1 - s_2);
yb(8) - (1 - s_3)];
end
function ysol = bvpexam2(x, y)
yy1 = (B_1*(y(2)^2 - y(1) * y(2)) + B_3*sin(alpha)^2*Ha*(y(2)-A) - A^2)/(B_2 + (3*(n- 1)/2)*B_2*We*y(3)*y(3));
yy2 = ((Pr*B_4)*(s_1*y(2) + y(2)*y(4) - y(1)*y(5)) ...
- B_2*Pr*Ec*((y(3))^2)*((1+(3*(n-1)/2))*We*(y(3))^2) + Q_star*(y(4)+s_1) ...
- B_3*Ha*Ec*Pr*((sin(alpha))^2)*((y(2) - A)^2))/B_5;
yy3 = Sc*(y(2)*y(6) + s_2*y(2) - y(1)*y(7)) - Kr*(y(6)+ 1/s_2);
yy4 = Lb*(y(8)+s_3) - Lb*y(9) + Pe*(y(9)*y(7) + (y(8)+delta_1+s_3));
ysol= [y(2); y(3); yy1; y(5); yy2; y(7); yy3; y(8); yy4];
end
end
7 Comments
Answers (0)
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!