You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Find the roots of transcendental algebraic equations
7 views (last 30 days)
Show older comments
University
on 13 Mar 2024
Hello, I have a transcendental equation that has real and imaginary roots. I used MAPLE to solve the algebraic equation but it MAPLE root finder seems to skip some roots. Please can anyone help to solve the problem with MATLAB.
I want the following:
- Compute the roots of equation q, using the second the equation
- Use the computed roots to compute $\tau$ using the first equation.Computes the minimum values of real part of tau xi = (-0.3, 0.3) and u=(0,3).
- Plot contour of the minimum values of real part of tau for xi = (-0.3, 0.3) and u=(0,3) and chi_a = 1.219 × e-6.
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200 microns
chi_a = 1.219 × e-6.
12 Comments
Torsten
on 13 Mar 2024
Some parameters are missing (chi_a, xi, u).
And what do you mean by
Computes the minimum values of $\tau$ (tau_min) for each root.
?
Given a root for q, tau follows. What are the "minimum values of tau" ?
Star Strider
on 13 Mar 2024
Please code those, and provide values for , ξ, and the others.
Then the first approach would be to plot them as functions of the independent variable, and see what the result it. It might be easiest to do that in the Symbolic Math Toolbox and then use fplot for the plots. Then you can see where the roots are. Use the 'MeshDensity' name-value pair to increase the resolution, if necessary. Also consider using fimplicit with the second equation.
University
on 13 Mar 2024
xi = (-0.3, 0.3) and u=(0,3) and chi_a = 1.219 × e-6. Find the minimum of real part of tau. I use tau_min to denotes miniumum of tau. So you can ignore it.
Torsten
on 13 Mar 2024
So in 2., you want to compute
tau_min = min_(q is root of 2nd equation) real(tau(q))
?
University
on 13 Mar 2024
Compute the roots of q and use the roots to find the minimum of real parts of tau. You can denotes the minimum values of tau with any symbol. Note that I want to run it for xi =(-0.3, 0.3, 10) and u=(0, 3, 10). tau and q depends on xi and u
Sam Chak
on 13 Mar 2024
@University, Could you please provide the equations for τ, q, and , and list all the constant values in MATLAB code? This will enable us to promptly evaluate the coded equations using functions from the toolboxes. You can click on the indentation icon to enter the code.
University
on 13 Mar 2024
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
% Function for the equation q
q_eqn = @(q, xi, u, tau) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * tau;
% Ranges for xi and u
xi_range = linspace(-0.3, 0.3, 100);
u_range = linspace(0, 3, 100);
% Initialize matrices to store results
real_tau_min = zeros(length(xi_range), length(u_range));
q_values = zeros(length(xi_range), length(u_range), 100); % 100 points for q values
% Loop through xi and u values
for i = 1:length(xi_range)
for j = 1:length(u_range)
xi = xi_range(i);
u = u_range(j);
% Solve for tau
initial_tau_guess = 0; % Initial guess for tau
tau = fsolve(@(tau) q_eqn(0, xi, u, tau), initial_tau_guess, optimset('Display','iter','MaxIter',1000,'MaxFunEvals',5000));
% Solve for q
initial_q_guess = 0; % Initial guess for q
q_vals = fsolve(@(q) q_eqn(q, xi, u, tau), initial_q_guess, optimset('Display','off','MaxIter',1000,'MaxFunEvals',5000));
q_values(i, j, :) = q_vals;
% Compute tau using the first equation
tau = alpha_val * gamma1 * ((4 * K1 * q_vals.^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2)^(-1);
% Find minimum real part of tau
real_tau_min(i, j) = min(real(tau));
end
end
%% Plot contour
figure;
contourf(u_range, xi_range, real_tau_min);
colorbar;
xlabel('u');
ylabel('\xi');
title('Minimum Real Part of \tau');
%% This is my code. I still believe that is still skiping some roots. I am expecting the contour plot to be similar to the attached fig
Torsten
on 13 Mar 2024
You have one equation with unknown q in which you have to insert the expression for tau as a function of q. So why do you call "fsolve" twice ?
University
on 13 Mar 2024
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
% Function for the equation q
q_eqn = @(q, xi, u) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * (alpha_val * gamma1 * ((4 * K1 * q^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2)^(-1));
% Ranges for xi and u
xi_range = linspace(-0.3, 0.3, 100);
u_range = linspace(0, 3, 100);
% Initialize matrix to store results
real_tau_min = zeros(length(xi_range), length(u_range));
% Loop through xi and u values
for i = 1:length(xi_range)
for j = 1:length(u_range)
xi = xi_range(i);
u = u_range(j);
% Solve for q
q_solution = fsolve(@(q) q_eqn(q, xi, u), 0);
% Compute tau using the first equation
tau = alpha_val * gamma1 * ((4 * K1 * q_solution^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2)^(-1);
% Store the real part of tau
real_tau_min(i, j) = real(tau);
end
end
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation s...
%% Plot contour of minimum real part of tau
figure;
contourf(u_range, xi_range, real_tau_min, 'LineColor', 'none');
colorbar;
xlabel('u');
ylabel('\xi');
title('Minimum Real Part of \tau');
% I have been able to correct my codes. I was what you mean. Is still
% giving me similar results. I still believe is skipping some roots. The
% results should be similarly to the attached figure.
Torsten
on 13 Mar 2024
Edited: Torsten
on 13 Mar 2024
If you don't have an asymtotic formula for the roots and thus good initial values for a root finder, it will be hard to catch them - especially because of the poles from tan(q). Note that "fsolve" can only find one root in each call.
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
xi = 0.2;
u = 1.5;
q_eqn = @(q) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * (alpha_val * gamma1 * ((4 * K1 * q^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2).^(-1));
q = -5:0.1:5;
plot(q,arrayfun(@(q)q_eqn(q),q))
University
on 13 Mar 2024
This was the same problem I was facing in MAPLE. I would apprepriate if you can help out.
Torsten
on 13 Mar 2024
Edited: Torsten
on 13 Mar 2024
@Star Strider suggested scanning the function - maybe it will work if you don't know anything about the root(s) you expect to get. For the example given, only q=0 seems to solve the equation:
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
xi = 0.2;
u = 1.5;
q_eqn = @(q) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * (alpha_val * gamma1 * ((4 * K1 * q^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2).^(-1));
q = -80:0.001:80;
fq = arrayfun(@(q)q_eqn(q),q);
qq=q(abs(fq)<1e-10).'
qq = 0
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)