ODE45 and dsolve result difference

19 views (last 30 days)
Bohan Li
Bohan Li on 30 Mar 2024
Edited: Sam Chak on 30 Mar 2024
Hi there! I am tring to solve a system of differential equations using both ode45 and dsolve. However, the outputs graph of both methods are very different.
Here's the ode45's code:
clear
clc
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Initial Condition and Time Range
y0 = [0; 0; 0; 1 ]; % Initial Condition
tspan = [0 0.5]; % Time Range
% Solving System of DE
[t, y] = ode45(@(t,y) [k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
-k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
-k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)], tspan, y0);
Then the dsolve code:
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*z - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*w - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*z + k2*y + k3*B*w - k4*z,
diff(z) == -k1*A*w + k2*v - k3*B*w + k4*z
];
initCond = [y(0) == 0, v(0) == 0, w(0) == 1, z(0) == 0];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t))
y = vpa(ySol(t))
w = vpa(wSol(t))
z = vpa(zSol(t))
% Plotting the graph
fplot(v, [0, 0.5], 'LineWidth', 2);
hold on;
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('v(t)', 'y(t)', 'w(t)', 'z(t)');
hold off;
For clarification, y(1), y(2), y(3) and y(4) correspond to, respetively, y, v, z, w.
Graph-wise. ode45 and dsolve's graph are, respectively,
and .

Accepted Answer

Sam Chak
Sam Chak on 30 Mar 2024
Edited: Sam Chak on 30 Mar 2024
The order of the state variables between and is swapped in the symbolic approach.
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*w - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*z - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*w + k2*y + k3*B*z - k4*w,
diff(z) == -k1*A*z + k2*v - k3*B*z + k4*w
];
% [diff(y) == k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
% diff(v) == k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
% diff(w) == -k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
% diff(z) == -k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)];
initCond = [y(0) == 0, v(0) == 0, w(0) == 0, z(0) == 1];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t));
y = vpa(ySol(t));
w = vpa(wSol(t));
z = vpa(zSol(t));
% Plotting the graph
hold on;
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(v, [0, 0.5], 'LineWidth', 2);
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('w(t)', 'v(t)', 'y(t)', 'z(t)');
hold off; grid on

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Products


Release

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!