ODE45 and dsolve result difference
19 views (last 30 days)
Show older comments
Hi there! I am tring to solve a system of differential equations using both ode45 and dsolve. However, the outputs graph of both methods are very different.
Here's the ode45's code:
clear
clc
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Initial Condition and Time Range
y0 = [0; 0; 0; 1 ]; % Initial Condition
tspan = [0 0.5]; % Time Range
% Solving System of DE
[t, y] = ode45(@(t,y) [k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
-k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
-k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)], tspan, y0);
Then the dsolve code:
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*z - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*w - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*z + k2*y + k3*B*w - k4*z,
diff(z) == -k1*A*w + k2*v - k3*B*w + k4*z
];
initCond = [y(0) == 0, v(0) == 0, w(0) == 1, z(0) == 0];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t))
y = vpa(ySol(t))
w = vpa(wSol(t))
z = vpa(zSol(t))
% Plotting the graph
fplot(v, [0, 0.5], 'LineWidth', 2);
hold on;
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('v(t)', 'y(t)', 'w(t)', 'z(t)');
hold off;
For clarification, y(1), y(2), y(3) and y(4) correspond to, respetively, y, v, z, w.
Graph-wise. ode45 and dsolve's graph are, respectively,
and
.0 Comments
Accepted Answer
Sam Chak
on 30 Mar 2024
Edited: Sam Chak
on 30 Mar 2024
The order of the state variables between
and
is swapped in the symbolic approach.
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*w - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*z - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*w + k2*y + k3*B*z - k4*w,
diff(z) == -k1*A*z + k2*v - k3*B*z + k4*w
];
% [diff(y) == k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
% diff(v) == k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
% diff(w) == -k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
% diff(z) == -k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)];
initCond = [y(0) == 0, v(0) == 0, w(0) == 0, z(0) == 1];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t));
y = vpa(ySol(t));
w = vpa(wSol(t));
z = vpa(zSol(t));
% Plotting the graph
hold on;
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(v, [0, 0.5], 'LineWidth', 2);
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('w(t)', 'v(t)', 'y(t)', 'z(t)');
hold off; grid on
0 Comments
More Answers (0)
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!