How can I link all the solutions (link between the blue lines)?

1 view (last 30 days)
clear all ;
syms V omega
xi = 0.2;
gamma = 0.3;
chi = 0.1e-1;
lambda =1;
eta = 1;
alpha =0.7;
beta = 0.1;
% omega=1.15;
F=0.3;
% Given parameters
k1 = -(1/2).*xi;
k2 = chi./(2.*omega);
k3 = F./(2.*omega);
k4 = (-omega.^2+1)./(2.*omega);
k5 = 3.*gamma./(8.*omega);
k6 = (1./2).*alpha-(1./2).*lambda;
k7 = -(1./8).*beta;
k8 = (1./2).*omega;
k9 = (eta.^2-omega.^2)./(2.*omega);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1 = -k7.^2;
A2 = -2.*k6.*k7;
A3 = -k6.^2-k9.^2;
A4 = k8.^2;
A5 = k5.^2.*k8.^2;
A6 = 2.*k4.*k5.*k8.^2;
A7 = -2.*k2.*k5.*k8.*k9;
A8 = k1.^2.*k8.^2+k4.^2.*k8.^2;
A9 = 2.*k1.*k2.*k7.*k8;
A10 = 2.*k1.*k2.*k6.*k8-2.*k2.*k4.*k8.*k9;
A11 = -k3.^2.*k8.^2;
A12 = k2.^2.*k7.^2;
A13 = 2.*k2.^2.*k6.*k7;
A14 = k2.^2.*k6.^2+k2.^2.*k9.^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define the system of equations
% Define the system of equations
EQ = V^22*A1^4*A5+4*V^20*A1^3*A2*A5+(4*A1^3*A3*A5+6*A1^2*A2^2*A5)*V^18+(-A1^3*A4*A6+12*A1^2*A2*A3*A5+4*A1*A2^3*A5)*V^16+(-3*A1^2*A2*A4*A6+6*A1^2*A3^2*A5+12*A1*A2^2*A3*A5+A2^4*A5)*V^14+(-3*A1^2*A3*A4*A6+A1^2*A4^2*A7-3*A1*A2^2*A4*A6+12*A1*A2*A3^2*A5+4*A2^3*A3*A5)*V^12+(A1^2*A4^2*A8-6*A1*A2*A3*A4*A6+2*A1*A2*A4^2*A7+4*A1*A3^3*A5-A2^3*A4*A6+6*A2^2*A3^2*A5)*V^10+(2*A1*A2*A4^2*A8-3*A1*A3^2*A4*A6+2*A1*A3*A4^2*A7-A1*A4^3*A9-3*A2^2*A3*A4*A6+A2^2*A4^2*A7+4*A2*A3^3*A5)*V^8+(2*A1*A3*A4^2*A8-A1*A4^3*A10+A2^2*A4^2*A8-3*A2*A3^2*A4*A6+2*A2*A3*A4^2*A7-A2*A4^3*A9+A3^4*A5+A4^4*A12)*V^6+(-A1*A4^3*A11+2*A2*A3*A4^2*A8-A2*A4^3*A10-A3^3*A4*A6+A3^2*A4^2*A7-A3*A4^3*A9+A4^4*A13)*V^4+(-A2*A4^3*A11+A3^2*A4^2*A8-A3*A4^3*A10+A4^4*A14)*V^2-A3*A4^3*A11;
% Solve the system of equations
sol = solve(EQ,V);
% Display the solutions
disp('Solutions for V:');
Solutions for V:
disp(sol);
% Plot the solutions versus omega
omega_values = linspace(0.1, 1.8, 300); % adjust the range accordingly
figure(11);
hold on;
for i = 1:length(sol)
V_values = double(subs(sol(i), omega, omega_values));
V_values(imag(V_values) ~= 0 | V_values <= 0) = NaN; % Filter out imaginary and non-positive values
plot(omega_values, V_values, 'b-', "linewidth", 2, 'DisplayName', ['Solution ' num2str(i)]);
end
hold off;
box on;
set(gca, "linewidth", 1.5, 'FontSize', 14, 'FontWeight', "bold");
xlabel('\omega', 'fontname', 'Times New Roman', 'FontSize', 16);
ylabel('V', 'fontname', 'Times New Roman', 'FontSize', 16);

Accepted Answer

Voss
Voss on 3 Apr 2024
One way is to collect all the points to be plotted into two matrices, one for x-coordinates and one for y-coordinates, remove the imaginary and non-positive y values (not just set them to NaN, since that creates gaps), sort the resulting vectors according to x, and plot a single line.
clear all ;
syms V omega
xi = 0.2;
gamma = 0.3;
chi = 0.1e-1;
lambda =1;
eta = 1;
alpha =0.7;
beta = 0.1;
% omega=1.15;
F=0.3;
% Given parameters
k1 = -(1/2).*xi;
k2 = chi./(2.*omega);
k3 = F./(2.*omega);
k4 = (-omega.^2+1)./(2.*omega);
k5 = 3.*gamma./(8.*omega);
k6 = (1./2).*alpha-(1./2).*lambda;
k7 = -(1./8).*beta;
k8 = (1./2).*omega;
k9 = (eta.^2-omega.^2)./(2.*omega);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1 = -k7.^2;
A2 = -2.*k6.*k7;
A3 = -k6.^2-k9.^2;
A4 = k8.^2;
A5 = k5.^2.*k8.^2;
A6 = 2.*k4.*k5.*k8.^2;
A7 = -2.*k2.*k5.*k8.*k9;
A8 = k1.^2.*k8.^2+k4.^2.*k8.^2;
A9 = 2.*k1.*k2.*k7.*k8;
A10 = 2.*k1.*k2.*k6.*k8-2.*k2.*k4.*k8.*k9;
A11 = -k3.^2.*k8.^2;
A12 = k2.^2.*k7.^2;
A13 = 2.*k2.^2.*k6.*k7;
A14 = k2.^2.*k6.^2+k2.^2.*k9.^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define the system of equations
EQ = V^22*A1^4*A5+4*V^20*A1^3*A2*A5+(4*A1^3*A3*A5+6*A1^2*A2^2*A5)*V^18+(-A1^3*A4*A6+12*A1^2*A2*A3*A5+4*A1*A2^3*A5)*V^16+(-3*A1^2*A2*A4*A6+6*A1^2*A3^2*A5+12*A1*A2^2*A3*A5+A2^4*A5)*V^14+(-3*A1^2*A3*A4*A6+A1^2*A4^2*A7-3*A1*A2^2*A4*A6+12*A1*A2*A3^2*A5+4*A2^3*A3*A5)*V^12+(A1^2*A4^2*A8-6*A1*A2*A3*A4*A6+2*A1*A2*A4^2*A7+4*A1*A3^3*A5-A2^3*A4*A6+6*A2^2*A3^2*A5)*V^10+(2*A1*A2*A4^2*A8-3*A1*A3^2*A4*A6+2*A1*A3*A4^2*A7-A1*A4^3*A9-3*A2^2*A3*A4*A6+A2^2*A4^2*A7+4*A2*A3^3*A5)*V^8+(2*A1*A3*A4^2*A8-A1*A4^3*A10+A2^2*A4^2*A8-3*A2*A3^2*A4*A6+2*A2*A3*A4^2*A7-A2*A4^3*A9+A3^4*A5+A4^4*A12)*V^6+(-A1*A4^3*A11+2*A2*A3*A4^2*A8-A2*A4^3*A10-A3^3*A4*A6+A3^2*A4^2*A7-A3*A4^3*A9+A4^4*A13)*V^4+(-A2*A4^3*A11+A3^2*A4^2*A8-A3*A4^3*A10+A4^4*A14)*V^2-A3*A4^3*A11;
% Solve the system of equations
sol = solve(EQ,V);
% % Display the solutions
% disp('Solutions for V:');
% disp(sol);
% Plot the solutions versus omega
omega_values = linspace(0.1, 1.8, 300); % adjust the range accordingly
figure(11);
hold on;
% collect x and y points for all solutions in matrices,
% one column per solution
Nsol = numel(sol);
x_plot = repmat(omega_values(:),1,Nsol);
y_plot = zeros(numel(omega_values),Nsol);
for i = 1:Nsol
y_plot(:,i) = double(subs(sol(i), omega, omega_values));
end
% remove imaginary and non-positive values
% (makes x_plot and y_plot into row vectors)
idx = imag(y_plot) ~= 0 | y_plot <= 0;
x_plot(idx) = [];
y_plot(idx) = [];
% sort by increasing x_plot values
[x_plot,idx] = sort(x_plot);
y_plot = y_plot(idx);
% plot
plot(x_plot, y_plot, 'b-', "linewidth", 2);
hold off;
box on;
set(gca, "linewidth", 1.5, 'FontSize', 14, 'FontWeight', "bold");
xlabel('\omega', 'fontname', 'Times New Roman', 'FontSize', 16);
ylabel('V', 'fontname', 'Times New Roman', 'FontSize', 16);

More Answers (0)

Categories

Find more on Get Started with MATLAB in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!