Solving ODE using laplace

9 views (last 30 days)
LUCA
LUCA on 21 Apr 2024
Edited: Torsten on 21 Apr 2024
This is the question I'm struggling on
Using the Laplace transform find the solution for the following ODE:
d^2/dt(y(t)) + 16y(t) = 16[1(t-3) -1(t)]
initial conditions:
y(0) = 0
dy(t)/dt = 0
I have to solve the ODE with laplace and with inverse laplace
Save the inverse laplace in y_sol.
This is what I wrote but it gives me the wrong answer:
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(1*(t-3)-1*(t))
ode(t) = 
Y1 = laplace(ode,t,s)
Y1 = 
ysol1 = subs(Y1,laplace(y,t,s),X)
ysol1 = 
ysol2 = subs(ysol1,y(0),y0)
ysol2 = 
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0)
ysol3 = 
ysol = solve(ysol3, X)
ysol = 
Y = simplify(expand(ysol))
Y = 
y_sol = ilaplace(Y)
y_sol = 
  7 Comments
Sam Chak
Sam Chak on 21 Apr 2024
I didn't simplify the analytical solution from dsolve, but it seems to yield the similar plot as WolframAlpha.
sympref('HeavisideAtOrigin', 1);
syms y(t) t s
dy = diff( y,t);
ddy = diff(dy,t);
massSpring = ddy + 16*y == 16*(heaviside(t-3) - heaviside(t))
massSpring(t) = 
sol = dsolve(massSpring, y(0) == 0, dy(0) == 0)
sol = 
fplot(sol, [0 13]), grid on, xlabel('t'), title('y(t)')
Torsten
Torsten on 21 Apr 2024
Edited: Torsten on 21 Apr 2024
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(heaviside(t-3)-heaviside(t));
Y1 = laplace(ode,t,s);
ysol1 = subs(Y1,laplace(y,t,s),X);
ysol2 = subs(ysol1,y(0),y0);
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0);
ysol = solve(ysol3, X);
Y = simplify(expand(ysol));
y_sol = ilaplace(Y)
y_sol = 
Check_Laplace_Solution = dsolve(ode, y(0) == 0, dot_y(0) == 0)
Check_Laplace_Solution = 
hold on
fplot(y_sol,[0 13])
fplot(Check_Laplace_Solution,[0 13])
hold off
grid on

Sign in to comment.

Answers (1)

Star Strider
Star Strider on 21 Apr 2024
Your code looks correct to me, and when I checked the result with dsolve, its solution agreees with yours —
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(1*(t-3)-1*(t))
ode(t) = 
Y1 = laplace(ode,t,s)
Y1 = 
ysol1 = subs(Y1,laplace(y,t,s),X)
ysol1 = 
ysol2 = subs(ysol1,y(0),y0)
ysol2 = 
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0)
ysol3 = 
ysol = solve(ysol3, X)
ysol = 
Y = simplify(expand(ysol))
Y = 
y_sol = ilaplace(Y)
y_sol = 
Check_Laplace_Solution = dsolve(ode, y(0) == 0, dot_y(0) == 0)
Check_Laplace_Solution = 
.

Categories

Find more on Creating and Concatenating Matrices in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!