tuning model predictive controller
8 views (last 30 days)
Show older comments
Hello,
so i want to tune my Model predictive controller; the model (microgrid) is working perfectly fine with the Model predictive controller, and the results are good, but my objectives within the model (microgrid) are not totally fulfilled, I tried to adjust the weights but still,
so my question is where can i have some live lessons in order to be able tune the MPC while taking into consideration my objectives,
thanks in advance for the answer,
0 Comments
Accepted Answer
Sam Chak
on 20 May 2024
Hi @Mounira
This is often a problem where designers begin with what they are trying to end with. Similar to some LQR practitioners, some choose MPC because it can autotune, hoping to achieve the performance objectives by simply specifying key parameters like the prediction horizon, control horizon, sampling time, and cost function weights, thereby avoiding the extensive mathematical intervention required for manual tuning of standard feedback controllers.
However, when performance objectives aren't met, designers often find themselves tuning more parameters than the original number of control gains in standard feedback controllers. Generally, there are no hard and fast rules in tuning, but I tend to call this the "circular tuning fallacy."
Hope these articles are helpful:
0 Comments
More Answers (0)
See Also
Categories
Find more on Model Predictive Control Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!