How to add a time delay to a diagonal ss from a reside pole function?
1 view (last 30 days)
Show older comments
Hi,
I have a list of poles (Ak) and residues(Ck) and one delay (tau) that corresponds to the following function:
I have created a ss representation of the rational function and also calculate the function analytically.
I have compared both functions using a bodeplot and they do not match when the time delay is present but match without it.
Can someone help me to find out how to add the time delay correctly?
% Delay problem
Ak = [-0.0633296088793117 + 0.00000000000000i
-0.188476918974608 + 0.00000000000000i
-0.592850411790702 + 0.00000000000000i];
Ck = [2.67546115276169e-05 + 0.00000000000000i
0.000235105989428637 + 0.00000000000000i
0.00132009482602487 + 0.00000000000000i];
D = 0;
tau = 0.001013802649678;
% Express as diagona form
F_A = eye(size(Ak,1),size(Ak,1)).*Ak;
F_B = ones(size(Ak));
F_C = Ck.';
F_D = D;
Fss = ss(F_A,F_B,F_C,F_D,'OutputDelay',tau);
% Analytic function
freq = logspace(-3,6,1000);
w = 2*pi*freq;
f = D;
for i = 1:length(Ak)
f = f + Ck(i)./(1j*w - Ak(i));
end
f = f.* exp(-1j*w.*tau);
Fana = frd(f,w);
% Comparison bode plot
opts = bodeoptions;
opts.FreqUnits = 'Hz';
opts.FreqScale = 'Log';
opts.MagUnits = 'abs';
opts.MagScale = 'Linear';
opts.grid = 'on';
figure, bodeplot(Fss,Fana,w,opts)
title("Bode plot of H")
legend('SS model', 'Analitic')
Thanks and BR,
//JH
0 Comments
Accepted Answer
Paul
on 3 Jul 2024
Edited: Paul
on 3 Jul 2024
Hi Joan,
The problem appears to be with how bodeplot is unwrapping the phase.
Here is the original code
% Delay problem
Ak = [-0.0633296088793117 + 0.00000000000000i
-0.188476918974608 + 0.00000000000000i
-0.592850411790702 + 0.00000000000000i];
Ck = [2.67546115276169e-05 + 0.00000000000000i
0.000235105989428637 + 0.00000000000000i
0.00132009482602487 + 0.00000000000000i];
D = 0;
tau = 0.001013802649678;
% Express as diagona form
F_A = eye(size(Ak,1),size(Ak,1)).*Ak;
F_B = ones(size(Ak));
F_C = Ck.';
F_D = D;
Fss = ss(F_A,F_B,F_C,F_D,'OutputDelay',tau);
% Analytic function
freq = logspace(-3,6,1000);
w = 2*pi*freq;
f = D;
for i = 1:length(Ak)
f = f + Ck(i)./(1j*w - Ak(i));
end
f = f.* exp(-1j*w.*tau);
Fana = frd(f,w);
% Comparison bode plot
opts = bodeoptions;
opts.FreqUnits = 'Hz';
opts.FreqScale = 'Log';
opts.MagUnits = 'abs';
opts.MagScale = 'Linear';
opts.grid = 'on';
figure, bodeplot(Fss,Fana,w,opts)
title("Bode plot of H")
legend('SS model', 'Analitic')
Zoom in on the end of the plot where things are different
xlim([1e4 1e6])
Now repeat the plot, but keep -180 <= phase <= 180
opts.PhaseWrapping = 'on';
figure, bodeplot(Fss,Fana,w,opts)
title("Bode plot of H")
legend('SS model', 'Analitic')
xlim([1e4 1e6])
Now both plots match.
I'm not sure why the phase unwrapping is a problem for Fana but not for Fss.
More Answers (0)
See Also
Categories
Find more on Get Started with Phased Array System Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!