Detecting storms from wave height data
28 views (last 30 days)
Show older comments
Maria Francesca bruno
on 14 Nov 2024 at 9:37
Commented: Star Strider
on 19 Nov 2024 at 13:46
I'm using the Image Analyst code to detect sea storms from wave height data using a threshold value as suggested by https://it.mathworks.com/matlabcentral/answers/2119581-detection-of-storms-from-precipitation-data#answer_1459176.
I fixed a threshold for wave height and a minimum storm duration.
Now I would like to modify the code to include small holes in the subsamples (for example 2 or more missing data) or few values below threshold. I would like to prevent storm splitting (see attached figure).
Thanks a lot to Image Anayst for his support.
load ('H.mat'); %3 hour data
threshold=1 %
% Find time periods with H >= threshold
stormPeriods = bwconncomp(H >= threshold);
props = regionprops(stormPeriods, H, 'Area', 'MeanIntensity','MaxIntensity',"SubarrayIdx");
values = [props.Area];
props = props(values*3 > 12 ); % storms with duration >12 h
A_cell = (struct2cell(props));
1 Comment
Image Analyst
on 14 Nov 2024 at 16:36
"include small holes in the subsamples (for example 2 or more missing data" <== So you want all NaN values to be considered as storms no matter how long the run of NaN's is?
"few values below threshold" <== like for example, what? 5 values below should be considered part of the storm on either side of that run of low values? 10 values? I guess we can just set a variable and you cann set it to whatever you want.
In your plot above, how many storms do you want there to be and where do they start and stop?
Accepted Answer
Star Strider
on 14 Nov 2024 at 14:39
I am not certain what you want.
Try this —
load ('H.mat'); %3 hour data
whos('-file','H.mat')
threshold=1 %
t = linspace(0, numel(H)-1, numel(H)); % Supply Missing Time Vector
Storms = H >= threshold;
Stormsa = [Storms; false];
StormStart = strfind(Stormsa(:).', [0 1])+1;
StormEnd = strfind(Stormsa(:).', [1 0]);
StormDur = StormEnd - StormStart
StormDur2 = StormDur(StormDur > 1)
b = fitdist(StormDur2(:), 'exponential')
StormDurStats = [min(StormDur) max(StormDur) mean(StormDur) median(StormDur) std(StormDur) mode(StormDur)]
figure
histfit(StormDur2, 100, 'exponential')
grid
StormIdx = [StormStart(StormDur>1); StormEnd(StormDur>1)].';
StormSplitThreshold = mean(StormDur)
% StormIdx = StormIdx(1:end-1,:)
for k = 1:size(StormIdx,1)-1
% DD = (StormIdx(k+1,1) - StormIdx(k,2))
if (StormIdx(k+1,1) - StormIdx(k,2)) <= StormSplitThreshold
StormIdx(k+1,1) = StormIdx(k,2);
end
end
StormIdx
[ts,Hs] = stairs(t, H);
format shortG
figure
stairs(t, H)
hold on
% patch([ts; flip(ts)], [zeros(size(Hs)); flip(Hs)], 'r', FaceAlpha=0.3, EdgeColor='r')
for k = 1:size(StormIdx,1)
idx = ts >= t(StormIdx(k,1)) & ts <= t(StormIdx(k,2));
[findidx1,findidx2] = bounds(find(idx));
StormTimes(k,:) = [findidx1,findidx2,ts(findidx1),ts(findidx2)];
% EndStormTimes = [k StormTimes(end,:)]
patch([ts(idx); flip(ts(idx))], [zeros(size(Hs(idx))); flip(Hs(idx))], 'r', FaceAlpha=0.5, EdgeColor='none', EdgeAlpha=0)
% plot(t(StormIdx(k,1) : StormIdx(k,2)), H(StormIdx(k,1) : StormIdx(k,2)), 'r.')
AUC(k,:) = [ts(findidx1) ts(findidx2) trapz(ts(idx(1:2:end)), Hs(idx(1:2:end)))];
end
Results = array2table(AUC, 'VariableNames',{'Start Time','End Time','Area'})
% StormTimes
hold off
grid
xlim([0 1E+3])
yline(threshold)
xlabel('Time (Units)')
ylabel('Height')
.
2 Comments
Star Strider
on 19 Nov 2024 at 13:46
My pleasure!
If my Answer helped you solve your problem, please Accept it!
.
More Answers (0)
See Also
Categories
Find more on Multirate Signal Processing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!