Warning: Non-finite result. The integration was unsuccessful. Singularity likely. > In integral2Calc>integral2t (line 131)

4 views (last 30 days)
Hi
i run the function
[Is]=currentMoM()
f = 300000000
N = 39
ra = 1
k0 = 6.2832
Z0 = 376.9911
lambda = 1
reason_for_failure = NaN + NaNi
Warning: Non-finite result. The integration was unsuccessful. Singularity likely.
Unrecognized function or variable 'Efieldin'.

Error in solution>@(x)triangle_basisn(x,index_i).*(4./(Z0.*k0)).*Efieldin(x) (line 36)
fun=@(x)triangle_basisn(x,index_i).*(4./(Z0.*k0)).*Efieldin(x);

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 77)
[q,errbnd] = vadapt(vfunAB,interval, ...

Error in integral (line 87)
Q = integralCalc(fun,a,b,opstruct);

Error in solution>currentMoM (line 37)
gm(index_i) =integral(fun,Phi0(index_i),Phi0(index_i)+2*pi./(N-1));
function [Is]=currentMoM()
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
[f,N,ra,k0,Z0,lambda] = parameter()
gamma_const=1.781;
Phi0=zeros(N);
e=exp(1);
dftm=2.*pi./(N-1);
for jj = 1:N+1
Phi0(jj)=(jj-1).*dftm;
end
% delta_c(i) = sqrt((pos(i,1) - pos(i+1,1))^2 + (pos(i,2) - pos(i+1,2))^2);
lmn = zeros(N);
%zmn = zeros(N);
gm = zeros(1,N);
zmn = zeros(N);
%vim = zeros(1,N);
%vsn = zeros(1,N);
coeif=(Z0.*k0./4).*ra.*dftm;
coeifn=(Z0./2).*sin(k0.*ra.*dftm./2);
for index_i = 1:N
for index_j = 1:N
if index_i == index_j
fun = @(x,y)triangle_basisn(x,index_i).*triangle_basisn(y,index_j).*ra.*(1-j.*(2/pi).*log(gamma_const.*k0.*ra*sqrt(2-2*cos(x-y))./2));
reason_for_failure = fun(Phi0(index_i),Phi0(index_j))
lmn(index_i,index_j) =integral2(fun, Phi0(index_i),Phi0(index_i)+2*pi./(N-1),Phi0(index_j),Phi0(index_j)+2*pi./(N-1));
else
fun = @(x,y)triangle_basisn(x,index_i).*triangle_basisn(y,index_j).*ra.^2.*besselh(0,2,k0.*ra*sqrt(2-2*cos(x-y)));
lmn(index_i,index_j) =integral2(fun,Phi0(index_i),Phi0(index_i)+2*pi./(N-1),Phi0(index_j),Phi0(index_j)+2*pi./(N-1));
zmn(index_i,index_j) = lmn(index_i,index_j);
fun=@(x)triangle_basisn(x,index_i).*(4./(Z0.*k0)).*Efieldin(x);
gm(index_i) =integral(fun,Phi0(index_i),Phi0(index_i)+2*pi./(N-1));
end
%vim(index_i) = delta_c(index_i) * exp(j*k0*(xm(index_i)*cos(phi_i)+ym(index_i)*sin(phi_i)));
%vsn(index_i) = delta_c(index_i) * exp(j*k0*(xm(index_i)*cos(phi_s)+ym(index_i)*sin(phi_s)));
end
W = linsolve(zmn,gm');
for ii=1:N
Is(ii)=W(ii);
end
y= Is
end
end
i use the integral2 and i recieve the message Warning: Non-finite result. The integration was unsuccessful. Singularity likely.
> In integral2Calc>integral2t (line 131)
what happen?
also i use the following function
function z=triangle_basisn(phi,kk)
[f,N,ra,k0,Z0,lambda] = parameter();
dftm=2.*pi./(N-1);
for jj = 1:N+1
Phi0(jj)=(jj-1).*dftm;
end
Phin=Phi0;
if kk==1
z=phi./dftm;
elseif ( phi >= Phin(kk-1) ) & ( phi <=Phin(kk));
z=(phi-Phin(kk-1))./dftm;
elseif (phi >= Phin(kk) ) & (phi <=Phin(kk+1));
z=(Phin(kk+1)-phi)./dftm;
end
end
function [f,N,ra,k0,Z0,lambda] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
N=39;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
tnak you

Answers (1)

Torsten
Torsten on 25 Nov 2024
fun(Phi0(1),Phi0(1))
gives
NaN + 1i*NaN
  11 Comments
Torsten
Torsten on 26 Nov 2024
Edited: Torsten on 26 Nov 2024
sorrry i receive the same message
Output argument "z" (and possibly others) not assigned a value in the execution with "triangle_basisn"
function.
Did you read @Walter Roberson 's and my comment ? Negative values of the independent variable phi are not covered in your if-statement, and thus no value is assigned to z:
if kk==1
z=phi./dftm;
elseif ( phi >= Phin(kk-1) ) & ( phi <=Phin(kk));
z=(phi-Phin(kk-1))./dftm;
elseif (phi >= Phin(kk) ) & (phi <=Phin(kk+1));
z=(Phin(kk+1)-phi)./dftm;
end

Sign in to comment.

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Products


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!