I think i found the answer. Is below code correct for this purpose?
layers = [
imageInputLayer([512 512 3],Normalization="none")
convolution2dLayer([11 11],96,"Name","conv1","BiasLearnRateFactor",2,"Stride",[4 4])
reluLayer("Name","relu1")
maxPooling2dLayer([3 3],"Name","pool1","Stride",[2 2])
convolution2dLayer([5 5],128,"Name","conv2","BiasLearnRateFactor",2,"Padding",[2 2 2 2])
reluLayer("Name","relu2")
maxPooling2dLayer([3 3],"Name","pool2","Stride",[2 2])
convolution2dLayer([3 3],256,"Name","conv3","BiasLearnRateFactor",2,"Padding",[1 1 1 1])
reluLayer("Name","relu3")
maxPooling2dLayer([3 3],"Name","pool3","Stride",[2 2])
convolution2dLayer([3 3],384,"Name","conv4","BiasLearnRateFactor",2,"Padding",[1 1 1 1])
reluLayer("Name","relu4")
maxPooling2dLayer([3 3],"Name","pool4","Stride",[2 2])
reluLayer("Name","relu6")
flattenLayer('Name','flatten1')
]
net=dlnetwork(layers);
dlX = dlarray(double((img)),'SSC');
feature= forward(net,dlX);

