trouble using pdepe to solve system of pdes

5 views (last 30 days)
Hello,
I have to solve the following system of pdes:
The code below uses pdepe to solve it, but it returned the error:
"Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative."
Could anyone help solve the problem?
Thank you in advance!
global D1 H D2
H = 91e-6; % paper height
D1 = 3e-6; % diffusion constant of pores
D2 = 1e-14;
t0 = 20
t0 = 20
global T k M0 C K eta rho cw cf0
T = 298;
k = 0.0035;
M0 = 0.0329;
C = 39.09;
K = 0.865;
eta = 0.47;
rho = 1500;
cf0 = 0.25*rho;
cw = 1000;
global csp
A1 = 1.3258;
A2 = -0.003931;
A3 = 20.7115;
A4 = -5364.05;
A5 = -17.58;
csp = vpa((A1/T)*exp((A2*T^2 + A3*T + A4)/(T + A5)));
tSpan1 = linspace(0,t0,1001);
xmesh = linspace(0,H,20);
m = 0;
sol1 = pdepe(m,@pdefun,@icfun,@bcfun1,xmesh,tSpan1);
Error using pdepe (line 294)
Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative.
function [c,f,s] = pdefun(x,t,u,dudx)
global eta D1 rho M0 C K csp k D2
c = [1-eta;eta];
f = [(1-eta)*D2;eta*D1].*dudx;
rh = u(2)/csp;
A = rho*M0*C*K*(1/csp)/((1-K*rh)*(1-K*rh+C*K*rh));
s = k*[A*u(2) - u(1);-A*u(2) + u(1)];
end
function u0 = icfun(x)
u0 = [0;0];
end
function [pl,ql,pr,qr] = bcfun1(xl,ul,xr,ur,t)
global cw
pl = [ul(1);ul(2)-cw];
ql = [0;0];
pr = [0;0];
qr = [1;1];
end

Accepted Answer

Torsten
Torsten on 9 Feb 2025
Edited: Torsten on 9 Feb 2025
Your initial condition for u(2) at x = 0 is not consistent with your boundary condition.
Use
function u0 = icfun(x)
global H cw
u0 = [0;0];
if x==0
u0(2)=cw;
end
end
instead.
And remove the vpa in the evaluation of csp.
  3 Comments
Torsten
Torsten on 9 Feb 2025
Edited: Torsten on 9 Feb 2025
For me it works in the current online MATLAB release R2024b. What MATLAB version do you use ?
global D1 H D2
H = 91e-6; % paper height
D1 = 3e-6; % diffusion constant of pores
D2 = 1e-14;
t0 = 20;
global T k M0 C K eta rho cw cf0
T = 298;
k = 0.0035;
M0 = 0.0329;
C = 39.09;
K = 0.865;
eta = 0.47;
rho = 1500;
cf0 = 0.25*rho;
cw = 1000;
global csp
A1 = 1.3258;
A2 = -0.003931;
A3 = 20.7115;
A4 = -5364.05;
A5 = -17.58;
csp = (A1/T)*exp((A2*T^2 + A3*T + A4)/(T + A5));
tSpan1 = linspace(0,t0,1001);
xmesh = linspace(0,H,20);
m = 0;
sol1 = pdepe(m,@pdefun,@icfun,@bcfun1,xmesh,tSpan1);
u1 = sol1(:,:,1);
u2 = sol1(:,:,2);
plot(tSpan1,u2(:,end))
function [c,f,s] = pdefun(x,t,u,dudx)
global eta D1 rho M0 C K csp k D2
c = [1-eta;eta];
f = [(1-eta)*D2;eta*D1].*dudx;
rh = u(2)/csp;
A = rho*M0*C*K*(1/csp)/((1-K*rh)*(1-K*rh+C*K*rh));
s = k*[A*u(2) - u(1);-A*u(2) + u(1)];
end
function u0 = icfun(x)
global cw
u0 = [0;0];
if x==0
u0(2)=cw;
end
end
function [pl,ql,pr,qr] = bcfun1(xl,ul,xr,ur,t)
global cw
pl = [ul(1);ul(2)-cw];
ql = [0;0];
pr = [0;0];
qr = [1;1];
end
Chin Ching
Chin Ching on 9 Feb 2025
it works for me now. Thanks a lot Torsten!

Sign in to comment.

More Answers (0)

Tags

Products


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!