There are two ways.
You can do it symbolically:
x_0__vec = [A*cos(B)*cos(C)
x__vec = x_0__vec + int(u__vec_, t, 0, t)
Or you can do it numerically
An = 1.2; Bn = pi/8; Cn = 2*pi/5;
x0_vec = [An*cos(Bn)*cos(Cn)
u_vec = @(t) [t.^2/5, exp(-t), sqrt(t)];
x_vec = x0_vec + integral(u_vec, 0, tn, 'arrayvalued', true)
x_vec =
8.6759 1.3359 7.7962
13.7926 6.4525 12.9128
9.3877 2.0477 8.5080
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Note that in the numeric case, you must define a specific numeric upper-bound for the integration.