Info

This question is closed. Reopen it to edit or answer.

Adding noise to a Gaussian

1 view (last 30 days)
Nicole Bonino
Nicole Bonino on 8 Aug 2015
Closed: Walter Roberson on 8 Aug 2015
This problem deals with data fitting in the presence of noise.
a. Write a function Gaussian.m which will generate a 1D Gaussian function of the form y=A.*exp((-(x-x_0).^2)./s);, where s is the spread of the Gaussian, A is a constant factor and the mean x_0. The inputs to the function should be a vector of values (x), A, , and !. To test your function, plot the Gaussian corresponding to x= [-0.5:0.01:0.5-0.01], A = 100, s = 1, and x0= 0.
b. Add noise the Gaussian you generated above and plot the corresponding result. You may use the randn.m function in Matlab to generate a 100 random (noise) values between 0-1. Hence the new Gaussian function (Gnew = y + factor*noise) can be obtained. On the same graph, plot out Gnew for 4 different values of factor = {0.0, 0.5, 7.5, 15}.

Answers (0)

This question is closed.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!