ODE45 and dsolve result discrepency
16 views (last 30 days)
Show older comments
Ridwan Hossain
on 10 Aug 2015
Commented: Ridwan Hossain
on 13 Aug 2015
I'm having a weird problem. I'm trying to solve a 2nd order ode with both ode45 and dsolve. The results are fine as long as I have non-zero initial conditions but they don't match when the equation has zero initial condition. Any idea why this is happening? Also, which one would be the right choice as I am supposed to implement it in a larger piece of code.
Here is my script:
clc
%clear all
m=3.4e6;
k=3.51e10;
c=13.8e6;
f=7.2578;
[t1,x]=ode45(@pend,[0 5],[0 0] );
j=1;
t2=0:0.01:5;
l=length(t2);
disp2=zeros(l,1);
vel2=zeros(l,1);
for t=0:0.01:5
sol_disp2=dsolve('m*D2x+c*Dx+k*x=f','x(0)=0,Dx(0)=0');
sol_vel2=diff(sol_disp2);
disp2(j)=vpa(subs(sol_disp2));
vel2(j)=vpa(subs(sol_vel2));
j=j+1;
end
subplot(2,2,1)
plot(t1,x(:,1))
subplot(2,2,2)
plot(t1,x(:,2))
subplot(2,2,3)
plot(t2,disp2)
subplot(2,2,4)
plot(t2,vel2)
and the ode45 function:
function dxdt = pend(t,x)
m=3.4e6;
k=3.51e10;
c=13.8e6;
f=7.2578;
x1=x(1);
x2=x(2);
% fun=@(x) sin(x)/z2;
dxdt=[x2; (f-c*x2-k*x1)/m];
end
thanks in advance
1 Comment
Torsten
on 11 Aug 2015
Just insert your symbolic solution into
m*D2x+c*Dx+k*x=f, x(0)=x'(0)=0
to see whether it's correct or not.
Best wishes
Torsten.
Accepted Answer
Nitin Khola
on 12 Aug 2015
Hey Ridwad,
I understand you are facing discrepancies in solutions from "dsolve" and "ode45" for zero initial conditions. It appears that the system has faster dynamics compared to the default tolerances in "ode45". You can set the absolute and relative tolerances to smaller values using "odeset" as follows:
>> options = odeset('RelTol', 1e-10, 'AbsTol', 1e-12);
>> [t1,x]=ode45(@pend,[0 5],[0 0],options);
Setting these tolerances to appropriate values get the solutions from the two solvers to match as shown below. Hope this helps.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/178016/image.jpeg)
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!