How to convert from euler´s method to ODE45?
1 view (last 30 days)
Show older comments
i want to use ODE45 based in the next code.
% Parameters
um=0.54;
Km=0.03;
k1=0.4;
k2=1.24;
Csx=0.095;
Csp=0.15;
Cnx=0.20;
Rcsx=0.022;
Rcnx=0.26;
%Initial Conditions
X(1)=1.16;
S(1)=20.05;
N(1)=2.00;
P(1)=1.01;
V(1)=3;
Sin=60;
Nin=0;
%Specific growth rate, we need to be care here, because u is not a function of time and it looks like a DAE.
u(1)=um*((N(1)/S(1))/((N(1)/S(1))+Km));
%simulation time and step for euler tsim=25;
t(1)=0;
dt=0.00001;
i=1;
while t(i)<tsim
if t(i)>4.9 && t(i)<5.001
F1=0.8;
F2=0;
else
F1=0;
F2=0;
end
V(i+1)=V(i)+(F1+F2)*dt;
X(i+1)=X(i)+(u(i)*X(i))*dt-((F1+F2)/V(i))*X(i)*dt;
S(i+1)=S(i)-(Csx*u(i)*X(i)+Rcsx*X(i))*dt-(Csp*(k1*u(i)*X(i)+k2*X(i)))*dt+(F1/V(i))*Sin*dt-((F1+F2)/V(i))*S(i)*dt;
P(i+1)=P(i)+((k1*u(i)*X(i))+(k2*X(i)))*dt-((F1+F2)/V(i))*P(i)*dt;
N(i+1)=N(i)-((Cnx*u(i)*X(i))+(Rcnx*X(i)))*dt+(F2/V(i))*Nin*dt-((F1+F2)/V(i))*N(i)*dt;
if N(i+1)<0
N(i+1)=0;
end
u(i+1)=um*((N(i+1)/S(i+1))/((N(i+1)/S(i+1))+Km));
t(i+1)=t(i)+dt;
i=i+1;
end
I will appreciate your help.
Best Regads
0 Comments
Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!