In pattern recognition using neural network what should be the output?
2 views (last 30 days)
Show older comments
Suppose I want to recognise a particular face I am extracting sift points from it and feeding it as a input vector . Then what should be the output ? I am talking during the training phase .
How are outputs decided for a particular type of input pattern?
0 Comments
Accepted Answer
Greg Heath
on 11 Jun 2016
% For c classification categories numbered 1:c, use a classindex row vector
classind = [ 5 3 1 4 2 5 4 3 2 1 ]
N = length(classind)
% The corresponding target matrix is obtained using the ind2vec command
target = full(ind2vec(classind))
% The corresponding output will be a matrix of the same size
outind = vec2ind(output)
err = outind ~= classind
Nerr = sum(err)
PctErr = 100*Nerr/N
%Obviously, more is needed to obtain error rates for individual classes.
A search of both the NEWSGROUP and ANSWERS using
greg patternnet
should yield details.
Hope this helps.
Thank you for formally accepting my answer.
Greg
2 Comments
Greg Heath
on 13 Jun 2016
Whatever you want to classify.
The face is that of Karen
or
the face has a scar under the left eye?
Greg
More Answers (0)
See Also
Categories
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!