Plotting a peak envelope
13 views (last 30 days)
Show older comments
I have measured the swinging off of a resonant circuit with a oscilloscope. Now I'm trying to fit a peak envelope over this data. Therefore I've tried:
figure
plot(temp(:,1), smooth(temp(:,2),30))
hold on
plot(temp(:,1), smooth(abs(hilbert(temp(:,2))),190))
I still get a slightly oscillating function, instead of a constantly decreasing function. How can I improve the envelope function? Would really appreciate help. My solution is shown in the image. Cheers
P.s.: For the argument of smooth(x,y) I iteratively worked out optimal values
0 Comments
Accepted Answer
Star Strider
on 11 Jul 2016
Edited: Star Strider
on 12 Jul 2016
I don’t have your signal, so I can’t provide definitive code.
First, do a fft of your signal so you have an idea of the frequency content.
Second, experiment with the envelope function (or its equivalent, the hilbert call you’ve already used) but without the smooth call:
y = abs(hilbert(temp(:,2)));
You may have to adjust the parameters of the hilbert function.
Another possibility is to use a bandpass filter, and just experiment with the passbands until your get the result you want. Use the results of the fft call for your design. The objective is to pass only the low-frequency envelope of the function.
-----------------------------------------------------------
EDIT —
This isn’t perfect, but it’s the best I can do:
[d,s,r] = xlsread('Camill Trüeb F0002CH1.csv', 'E1:E2500');
Ts = 4E-10;
Fs = 1/Ts;
Fn = Fs/2;
tv = (0:length(d)-1)*Ts;
st = find(d > 0.1, 1, 'first');
d = d(st:end);
tv = tv(st:end);
L = length(d);
[pks, locs] = findpeaks(abs(d), tv, 'MinPeakDist',1E-7);
q = [locs' ones(size(locs'))]\log(abs(pks)); % Initial Parameter Estimaes
fitfcn = @(b,t) b(1) .* exp(b(2).*t) + b(3); % Fit Function
SSECF = @(b) sum((pks - fitfcn(b,locs')).^2); % Cost Function
[B,SSE] = fminsearch(SSECF, [pks(1); q(1); 0]);
figure(5)
plot(tv, d)
hold on
plot(tv, fitfcn(B,tv))
hold off
grid
2 Comments
More Answers (2)
Greg Dionne
on 11 Jul 2016
Edited: Greg Dionne
on 12 Jul 2016
If you have HILBERT then you have access to the Signal Processing Toolbox. If you have R2015b or later, try using ENVELOPE:
[d,s,r] = xlsread('F0002CH1.csv', 'E1:E2500')
%zoom in on decaying portion
envelope(d(580:end),500,'analytic')
2 Comments
Greg Dionne
on 12 Jul 2016
It should be in 16a.
cd ([matlabroot '/toolbox/signal/signal'])
edit envelope
Hopefully it'll be there.
See Also
Categories
Find more on Transforms in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!