Boundary conditions with stiff problems

3 views (last 30 days)
Albert Jimenez
Albert Jimenez on 8 Dec 2016
Commented: Albert Jimenez on 21 Dec 2016
Hello, I'm trying to solve a system of PDEs that depends on space (1 dimension) and time. I want to solve it using a second order discretization in space and then using ode23s to solve the system of ODEs (method of lines).
The problem is that I have a laplacian operator and I can just integrate in the interior nodes (let's say from 2 to n-1). The values for nodes 1 and n depend on their neighbours and should be updated at each time step.
How could I set these restrictions to solver?
Here is the scheme:
function dydt = fun(t,u)
for j = 2:n-1
impose right hand side function
end
%Now I want to impose the value in y(1) and y(end)
end

Answers (3)

Torsten
Torsten on 8 Dec 2016
Boundary conditions don't depend on neighbour values, but are given independently.
What are the boundary conditions for your PDE ?
Best wishes
Torsten.
  1 Comment
Albert Jimenez
Albert Jimenez on 8 Dec 2016
Edited: Albert Jimenez on 8 Dec 2016
The boundary conditions are du/dx = G(u), for a given function G at x=0 and x=1 (the same for two points).
I have tried to discretize them too but the solution is not as expected (in fact, I obtain a warning: matrix is singular, close to singular or badly scaled).
I will send you the paper I'm trying to simulate if needed.
Thanks

Sign in to comment.


Torsten
Torsten on 9 Dec 2016
Use the equations
(u(2)-u(1))/(x(2)-x(1)) = G(u(1))
(u(n)-u(n-1))/(x(n)-x(n-1)) = G(u(n))
to solve for u(1) (u at 0) and u(n) (u at 1).
Then use these values for the discretization in the inner grid points.
Best wishes
Torsten.

Albert Jimenez
Albert Jimenez on 9 Dec 2016
The file attached contains the system I want to solve (1D). Using a second order discretization in space, the laplacian looks like
(u(j-1)+u(j+1)-2u(j))/(deltax^2)
The boundary conditions are
du/dx = A(u-B) at x=0 and 1
where A and B are constants.
If I discretize the first order derivative with a second order discretization, I obtain
(u(0)-u(2))/(2*deltax) = A(u(1)-B)
where u(0) is the value of u in a ficticious node. Then I can isolate the value of u(0) and replace in the scheme equation for the first node.
Is this what you were suggesting? This way, and assuming I don't have any mistake in the code, I get constant solutions (and I shouldn't).
Here is the code I am using: http://pastebin.com/ANe9ZgUz
Thanks
  6 Comments
Torsten
Torsten on 13 Dec 2016
Edited: Torsten on 13 Dec 2016
No. The boundary conditions give you u(0) depending on u(1),u(2) and u(n+1) depending on u(n-1),u(n).
Inserting these expressions in the discretized Laplacian in x(1) and x(n) give you the time derivatives for u(1) and u(n).
Best wishes
Torsten.
Albert Jimenez
Albert Jimenez on 21 Dec 2016
Thanks! You are right and this is what I tried at the begining. However, I do not obtain the result as shown in the paper I am trying to reproduce. I could sent you the paper if you are interested.
Thanks again.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!