Question related to vectorized matrix operation.
1 view (last 30 days)
Show older comments
i have two matrices A and B; A is say (Nx3) where N is rather large like 1000+... B is (nx2) where n is rather smaller of the order 10 or so.. but it does not matter it is smaller than A row size. i would like to compute
for i = 1:N
D = ( A(i,1)- B(1:n,1) )^2 + (A(i,2) - B(1:n,2)^2 )
end
for e.g. if N is 4, and n =2 then D = a [4x2] matrix...
I am able to perform this using for loops without much difficulty but would like to try using the vectorized Matrix operations instead for improving the performance and speed. Thanks in advance.
0 Comments
Accepted Answer
Stephen23
on 22 Jan 2017
Edited: Andrei Bobrov
on 23 Jan 2017
>> A = randi(9,4,3)
A =
4 2 9
9 4 4
5 4 8
4 2 8
>> B = randi(9,3,2)
B =
3 2
6 4
3 1
>> D = bsxfun(@minus,A(:,1),B(:,1).').^2 + bsxfun(@minus,A(:,2),B(:,2).').^2
D =
1 8 2
40 9 45
8 1 13
1 8 2
4 Comments
More Answers (1)
Andrei Bobrov
on 23 Jan 2017
Edited: Andrei Bobrov
on 23 Jan 2017
My variants:
For R2016b and later
>> C2 = squeeze(sum((A(:,1:2) - permute(B,[3,2,1])).^2,2))
C2 =
1 8 2
40 9 45
8 1 13
1 8 2
and with bsxfun:
>> C3 = squeeze(sum(bsxfun(@minus,A(:,1:2),permute(B,[3,2,1])).^2,2))
C3 =
1 8 2
40 9 45
8 1 13
1 8 2
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!