Problem Solving Symbolic Inequalities
30 views (last 30 days)
Show older comments
Ben
on 14 Mar 2012
Commented: filston Rukerandanga
on 14 Jul 2020
I'm trying to use Matlab to solve inequalities like the example below, but only have partial sucess, with other times getting the result shown below.
EDU>> solution=solve('((k1^2 + 1080.0*k1 - 2948400.0)/(k1 - 4660.0))>0')
solution = matrix([[solve([0.0 < (k1^2 + 1080.0*k1 - 2948400.0)/(k1 - 4660.0)], [k1])]])
I know that the solutions for this example are -2340<k1<1260 & k1>4660, is there something that I can do differently to make this work in Matlab? Thanks.
0 Comments
Accepted Answer
Stefan Wehmeier
on 19 Mar 2012
Note that by default solve is in complex mode, i.e., you are looking for all solutions within the complex numbers. Try
solution=feval(symengine, 'solve', '((k1^2 + 1080.0*k1 - 2948400.0)/(k1 - 4660.0))>0', 'k1', 'Real')
2 Comments
Alexander
on 19 Mar 2012
|solve| also supports the option |real|, so you don't need |feval|:
solution = solve('((k1^2 + 1080.0*k1 - 2948400.0)/(k1 - 4660.0))>0', 'Real', true)
filston Rukerandanga
on 14 Jul 2020
Confirmed, the option 'real', solved my problem. Before it was giving me a warning like :
Warning: Unable to find explicit solution. For options, see help.
> In solve (line 317)
% So here is my working code
syms n
eq1 = -10*log10(abs(1/(1 + (.25)^(2*n))))<=0.05;
eq2 = -10*log10(abs(1/(1 + (2)^(2*n))))>10;
eq1 = rewrite( -10*log10(abs(1/(1 + (.25)^(2*n))))<=0.05,'log');
eq2 = rewrite(-10*log10(abs(1/(1 + (2)^(2*n))))>10, 'log');
soln = solve(eq1,eq2, n, 'IgnoreAnalyticConstraints',1,'real',1);
n = vpa(soln)
More Answers (1)
Walter Roberson
on 14 Mar 2012
Symbolic solvers are notoriously poor at inequalities. All except the long-gone Axiom: it was supposedly good.
In the particular case above, Maple 15 gives the solution as
RealRange(Open(-2340), Open(1260))
RealRange(Open(4660), infinity)
In general, though, what I usually end up doing is transforming the inequality in to an equality by introducing a variable that I add constraints on to:
syms k1
syms c positive
solve( ((k1^2 + 1080.0*k1 - 2948400.0)/(k1 - 4660.0)) - c, k1)
Since the assumed-positive value c needs to be subtracted for the expression to equal 0, then that is equivalent to saying that the result of the expression (without the "- c") must be positive.
There have been a fair number of expressions in Maple that I could not get anywhere on until I substituted a particular number (symbolic) as the difference and made the expressions in to equalities.
0 Comments
See Also
Categories
Find more on Equation Solving in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!