Re-write MPC cost function to QP formulation
3 views (last 30 days)
Show older comments
Hello!
I've been trying to make a simple script to re-write the cost function in the usual MPC formulation to the QP formulation used to solve the optmization problem. My code is as follows: (Note its using symbolics toolbox)
xd = xda+gradxda*(x7-thetaka);
yd = yda+gradyda*(x7-thetaka);
x = [x1 x2 x3 x4 x5 x6 x7].';
u = [u1 u2 u3 u4 u5].';
z = [x;u];
e_c = sinx*(x1-xd)-cosx*(x2-yd);
e_l = -cosx*(x1-xd)-sinx*(x2-yd);
Q = [q_c 0; 0 q_l];
J = [e_c;e_l].'*Q*[e_c;e_l] - q_t*x7;
H = hessian(J,z);
c = gradient(J,z);
c = subs(c, z, [0;0;0;0;0;0;0;0;0;0;0;0]);
f = 0.5*z.'*H*z+c.'*z;
isequal(simplify(J), simplify(f))
Should not J and f be equal? The isequal command will yield a logical 0 for me. However I tested it on an example cost function, found here: https://se.mathworks.com/help/optim/ug/quadprog.html#bssh6y6-8 and using that cost function with my above code will yield a logical 1, as I expect. Have I misunderstood the connection between J and f or have I made a coding mistake?
Best regards MC
0 Comments
Answers (1)
Nicolas Schmit
on 5 Sep 2017
J and f are not equal because of the constant term in J. If you take the Taylor expansion of J, you obtain:
J == J(z=0) + gradient(J, z=0)'*z + 1/2* z'*hessian(J, z=0)*z
Thus, f = J - J(z=0), Where J(z=0) = subs(J, z, zeros(size(z)).
The example cost function in the documentation yields a logical 1 because it has no constant term.
You can always remove the constant term from the cost function because it has no impact on the final solution.
0 Comments
See Also
Categories
Find more on Model Predictive Control Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!