Null space vs eigenvectors
3 views (last 30 days)
Show older comments
Below is a code I ran to compare the null space & the eigenvectors of matrix A. Please correct me if I am wrong, but I thought that the eigenvectors are the same as the null space for the matrix [A-D(n,n)*I]. Unfortunately, my results do not seem to support that premise. What do I have wrong?
A=[[14 8 -19];[-40 -25 52];[-5 -4 6]];
[V,D]=eig(A);
Vnull=null(A-D(1,1)*eye(3));
Vnull=[null(A-D(1,1)*eye(3)) null(A-D(2,2)*eye(3)) null(A-D(3,3)*eye(3))];
Vchek=[V Vnull];
0 Comments
Accepted Answer
David Goodmanson
on 10 Jun 2017
Edited: David Goodmanson
on 10 Jun 2017
Hi Jeff, Since your eigenvalues are all distinct, what you have is basically correct. It's just that the eigenvector and the null vector don't have to be identical, merely proportional. Taking the first column of both Vnull and V and dividing element by element shows proportionality
>> V(:,1)./Vnull(:,1)
ans =
0.7071 - 0.7071i
0.7071 - 0.7071i
0.7071 - 0.7071i
and the same is true for the other two columns.
More Answers (0)
See Also
Categories
Find more on Operating on Diagonal Matrices in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!