How to fit Plane (z=ax+by+c) to 3D point cloud data?

65 views (last 30 days)
Hi, I am trying to do plane fit to 3D point data. Point cloud file is attached. Here is my code I tried using least square method
clc;
clear all;
close all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%reading %%%%%%%%%
arr = step_mask('Step_scan01_ex.xlsx','Sheet1', 'A:C');
%subplot(1,3,1)
x=arr(:,1);
y=arr(:,2);
z=arr(:,3)
plot3(arr(:,1),arr(:,2),arr(:,3),'.'); grid on
xlabel('x(mm)'); ylabel('y(mm)'); zlabel('z(mm)');
title('Masked plot');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%least squares method %%%%%%%%%%%
[xnum,ynum]=size(arr);
%
for i = 1: xnum
xz (i) = x (i) * z (i);
yz (i) = y (i) * z (i);
xy (i) = x (i) * y (i);
end
Sxz = sum (sum (xz));
Syz = sum (sum (yz));
Sz = sum (sum (z));
Sxy = sum (sum (xy));
Sx = ynum*sum (x);
Sy = sum (y);
Sx2 = sum (x.^2);
Sy2 = sum (y.^2);
A = [Sx2 Sxy Sx; Sxy Sy2 Sy; Sx Sy xnum * ynum];
Z = [Sxz; Syz; Sz];
W = A \ Z;
w1 = W (1);
w2 = W (2);
w3 = W (3);
l = - w1/(w1^2 + w2^2 + 1)^0.5;
m = - w2/(w1^2 + w2^2 + 1)^0.5;
n = 1/(w1^2 + w2^2 + 1)^0.5;
p = w3/(w1^2 + w2^2 + 1)^0.5;
%%%%%%%%%%%%%%%%Generating and displaying the obtained plane %%%%%%%%%
z_2=zeros(7340,1);
for i = 1: xnum
z_2(i)=(-l/n)*x(i)+(-m/n)*y(i)+(p/n);
i=i+1;
end
a=-l/n;
b=-m/n;
c=p/n;
averagev = sum(sum(z_2))/(xnum * ynum);
figure;
plot3(x,y,z_2,'.'); grid on
xlabel('x'); ylabel('y'); zlabel('z(mm)');
title('Fitted Plane');
sa = abs(z-z_2);
figure;
plot3(x,y,sa,'.'); grid on
xlabel('x'); ylabel('y'); zlabel('z(mm)');
title('Substracted Plane');
Result of this code is not looking fine to me. Could anyone please suggest what is the best way to fit plane with 3D pint data?

Accepted Answer

Star Strider
Star Strider on 22 Sep 2017
Try this:
arr = xlsread('Step_scan01_ex.xls');
x=arr(:,1);
y=arr(:,2);
z=arr(:,3);
DM = [x, y, ones(size(z))]; % Design Matrix
B = DM\z; % Estimate Parameters
[X,Y] = meshgrid(linspace(min(x),max(x),50), linspace(min(y),max(y),50));
Z = B(1)*X + B(2)*Y + B(3)*ones(size(X));
figure(1)
plot3(arr(:,1),arr(:,2),arr(:,3),'.')
hold on
meshc(X, Y, Z)
hold off
grid on
xlabel('x(mm)'); ylabel('y(mm)'); zlabel('z(mm)');
title('Masked plot');
grid on
text(-20, 50, 450, sprintf('Z = %.3f\\cdotX %+.3f\\cdotY %+3.0f', B))
  5 Comments
Stephen
Stephen on 29 Jun 2020
Is this fitting mechanism using orthogonal distance regression, instead of just minimizing the error in Z direction?

Sign in to comment.

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!