Not Enough Input Arguments ode15s
1 view (last 30 days)
Show older comments
Trying to solve an ODE using ode15s and I'm getting this error:
Not enough input arguments.
Error in Homework3>ode1 (line 153)
theta_double_dot =
(F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
Error in Homework3 (line 113)
[t1,Y1] = ode15s(ode1,tspan,Initial,options);
Here is my code:
Initial = [theta_0,theta_dot_0,I_0];
tspan = 0:0.1:10;
%Linear Equation Solution:
[t1,Y1] = ode15s(ode1,tspan,Initial,options);
theta = Y1(:,1);
thetadot = Y1(:,2);
I = Y1(:,3);
function dxdt = ode1(t1,Y1)
g = 9.81; %[m/s^2]
M_b = 1; %[kg]
M = 0.5; %[kg]
m = 3; %[kg]
J_b = 1.25; %[kg/m^2]
k_1 = 250; %[N/m]
c_1 = 5; %[N*s/m]
c_2 = 10; %[N*s/m]
L = 1.1; %[m]
s = 0.4; %[m]
h = 0.8; %[m]
L_induct = 400*10^-6; %[H]
R = 100; %[Ohms]
alpha = 0.4; %[V*s/m]
a = 0.45; %[m]
b = 0.6; %[m]
F_0 = 15; %[N]
omega = 4.3508; %[rad/s]
theta_0 = -pi/8; %[rad]
theta_dot_0 = 0.1; %[rad/s]
I_0 = 0; %[A]
J_eff = J_b+M*(L-s)^2+((m/L)*((L-s)^3+s^3)/3);
K_eff = ((k_1*(h-s)^2)+(M_b*g*s)-(M*g*(L-s))-(m*g*((L/2)-s)));
C_eff = ((c_1*(h-s)^2)+(c_2*(s)^2));
Initial = [theta_0,theta_dot_0,I_0];
theta = Initial(1);
thetadot = Initial(2);
I = Initial(3);
theta_double_dot = (F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
I_eq = (alpha*(sqrt(((L-s)*cos(theta*thetadot-a))^2+((L-s)*sin(theta*thetadot-b))^2)-(I*R))/L_induct);
dxdt = zeros(size(Initial));
dxdt(1) = thetadot;
dxdt(2) = theta_double_dot;
dxdt(3) = I_eq;
end
I really don't have much experience with ode15s at all so for all I know I could be completely off with this one, so any other mistakes that you might see and could point out would be greatly appreciated. Thanks!
0 Comments
Answers (1)
JK
on 7 Feb 2018
Here is the code: please ask if you have any further queries.
theta_0=1; % put your values here
theta_dot_0=2; % put your values here
I_0=3; % put your values here
Initial = [theta_0,theta_dot_0,I_0]';
tspan = 0:0.1:10;
%Linear Equation Solution:
[t1,Y1] = ode15s(@(t,Y) ode1(t,Y),tspan,Initial);
theta = Y1(:,1);
thetadot = Y1(:,2);
I = Y1(:,3);
figure
plot(t1,Y1(:,1));
title('theta');
figure
plot(t1,Y1(:,2));
title('thetadot');
figure
plot(t1,Y1(:,3));
title('I');
function dxdt = ode1(t1,~)
g = 9.81; %[m/s^2]
M_b = 1; %[kg]
M = 0.5; %[kg]
m = 3; %[kg]
J_b = 1.25; %[kg/m^2]
k_1 = 250; %[N/m]
c_1 = 5; %[N*s/m]
c_2 = 10; %[N*s/m]
L = 1.1; %[m]
s = 0.4; %[m]
h = 0.8; %[m]
L_induct = 400*10^-6; %[H]
R = 100; %[Ohms]
alpha = 0.4; %[V*s/m]
a = 0.45; %[m]
b = 0.6; %[m]
F_0 = 15; %[N]
omega = 4.3508; %[rad/s]
theta_0 = -pi/8; %[rad]
theta_dot_0 = 0.1; %[rad/s]
I_0 = 0; %[A]
J_eff = J_b+M*(L-s)^2+((m/L)*((L-s)^3+s^3)/3);
K_eff = ((k_1*(h-s)^2)+(M_b*g*s)-(M*g*(L-s))-(m*g*((L/2)-s)));
C_eff = ((c_1*(h-s)^2)+(c_2*(s)^2));
Initial = [theta_0,theta_dot_0,I_0];
theta = Initial(1);
thetadot = Initial(2);
I = Initial(3);
theta_double_dot = (F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
I_eq = (alpha*(sqrt(((L-s)*cos(theta*thetadot-a))^2+((L-s)*sin(theta*thetadot-b))^2)-(I*R))/L_induct);
dxdt = zeros(3,1);
dxdt(1) = thetadot;
dxdt(2) = theta_double_dot;
dxdt(3) = I_eq;
end
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!