Deriving the time-domain response of an equation, from a tf
110 views (last 30 days)
Show older comments
So I have the code to create a transfer function, from which you can get the graph of the step response:
G = tf([1], [1 0.9 5]);
step(G);
Easy. However I can't find a way to perform an inverse Laplace transform on G, to get an actual equation.
0 Comments
Answers (1)
Benjamin Großmann
on 24 Apr 2018
Edited: Benjamin Großmann
on 24 Apr 2018
G = tf([1], [1 0.9 5]);
[num,den] = tfdata(G);
syms s
G_sym = poly2sym(cell2mat(num),s)/poly2sym(cell2mat(den),s)
You have to multiply the input in laplace domain to the transfer function to get the system response to a specific input in time domain:
Y_lap_sym = G_sym/s; % U(s) = 1/s for the unit step
y_time_sym = ilaplace(Y_lap_sym);
2 Comments
AAYUSH MARU
on 3 Apr 2020
clc;
clear all;
syms t;
t= 0:0.001:10
G = tf([1], [1 0.9 5]);
[num,den] = tfdata(G);
syms s
G_sym = poly2sym(cell2mat(num),s)/poly2sym(cell2mat(den),s)
Y_four_sym = G_sym/s; % U(s) = 1/s for the unit step
y_time_sym = ifourier(Y_four_sym);
y_n = double(y_time_sym);
subplot(2,1,1)
plot(t,y_time_sym);
how to plot step response here?
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!