Polyfit with odd powers only?

15 views (last 30 days)
Nathan Kennedy
Nathan Kennedy on 8 May 2018
Commented: Rik on 8 May 2018
Hi,
I am trying to get a polyfit with only odd powers - so polyfit will not work because it has odd and even.
I do not have the curve fitting toolbox.
Is there another function of lines of code that will do this? I've searched around and read topics but cant seem to get it working...
x = [-50 -49.9 -49.7 -49.6 -49.4 -49.3 -49.1 -49 -48.8 -48.7 -48.6 -48.4 -48.3 -48.1 -48 -47.8 -47.7 -47.5 -47.4 -47.2 -47.1 -47 -46.8 -46.7 -46.5 -46.4 -46.2 -46.1 -45.9 -45.8 -45.7 -45.5 -45.4 -45.2 -45.1 -44.9 -44.8 -44.6 -44.5 -44.3 -44.2 -44.1 -43.9 -43.8 -43.6 -43.5 -43.3 -43.2 -43 -42.9 -42.8 -42.6 -42.5 -42.3 -42.2 -42 -41.9 -41.7 -41.6 -41.4 -41.3 -41.2 -41 -40.9 -40.7 -40.6 -40.4 -40.3 -40.1 -40 -39.9 -39.7 -39.6 -39.4 -39.3 -39.1 -39 -38.8 -38.7 -38.5 -38.4 -38.3 -38.1 -38 -37.8 -37.7 -37.5 -37.4 -37.2 -37.1 -37 -36.8 -36.7 -36.5 -36.4 -36.2 -36.1 -35.9 -35.8 -35.6 -35.5 -35.4 -35.2 -35.1 -34.9 -34.8 -34.6 -34.5 -34.3 -34.2 -34.1 -33.9 -33.8 -33.6 -33.5 -33.3 -33.2 -33 -32.9 -32.7 -32.6 -32.5 -32.3 -32.2 -32 -31.9 -31.7 -31.6 -31.4 -31.3 -31.2 -31 -30.9 -30.7 -30.6 -30.4 -30.3 -30.1 -30 -29.8 -29.7 -29.6 -29.4 -29.3 -29.1 -29 -28.8 -28.7 -28.5 -28.4 -28.3 -28.1 -28 -27.8 -27.7 -27.5 -27.4 -27.2 -27.1 -26.9 -26.8 -26.7 -26.5 -26.4 -26.2 -26.1 -25.9 -25.8 -25.6 -25.5 -25.4 -25.2 -25.1 -24.9 -24.8 -24.6 -24.5 -24.3 -24.2 -24 -23.9 -23.8 -23.6 -23.5 -23.3 -23.2 -23 -22.9 -22.7 -22.6 -22.5 -22.3 -22.2 -22 -21.9 -21.7 -21.6 -21.4 -21.3 -21.1 -21];
y = [-24.75097 -24.67164 -24.4801 -24.3577 -24.16221 -24.07226 -23.8446 -23.74222 -23.54947 -23.44198 -23.34674 -23.1479 -23.02214 -22.84665 -22.73298 -22.54093 -22.42616 -22.22016 -22.12129 -21.92824 -21.83178 -21.72892 -21.51621 -21.42578 -21.21406 -21.11511 -20.91655 -20.82348 -20.60448 -20.51302 -20.41675 -20.21547 -20.11611 -19.92628 -19.81589 -19.62125 -19.51582 -19.31288 -19.21443 -19.01194 -18.91046 -18.82235 -18.62306 -18.52276 -18.31691 -18.21565 -18.01884 -17.91986 -17.7219 -17.62982 -17.53392 -17.32261 -17.22725 -17.02708 -16.92875 -16.72639 -16.62719 -16.42994 -16.32574 -16.12839 -16.03569 -15.93901 -15.73049 -15.62979 -15.44024 -15.33308 -15.14062 -15.04554 -14.83767 -14.74988 -14.64451 -14.44684 -14.34319 -14.14475 -14.05439 -13.85229 -13.75652 -13.55815 -13.45882 -13.25949 -13.17189 -13.06923 -12.8671 -12.77876 -12.57822 -12.48735 -12.29286 -12.19462 -12.00186 -11.91447 -11.81787 -11.63201 -11.54073 -11.34952 -11.27196 -11.0899 -11.00039 -10.82415 -10.74487 -10.57193 -10.49104 -10.40562 -10.24737 -10.16286 -10.00381 -9.92581 -9.77272 -9.70086 -9.53765 -9.47072 -9.39156 -9.24676 -9.17277 -9.02883 -8.96238 -8.82083 -8.75691 -8.62635 -8.5598 -8.44304 -8.38449 -8.32837 -8.21934 -8.16412 -8.05312 -8.00186 -7.90721 -7.85077 -7.74586 -7.69695 -7.63831 -7.53163 -7.48072 -7.37289 -7.32272 -7.21067 -7.15707 -7.05749 -7.01419 -6.9207 -6.88097 -6.84193 -6.77068 -6.74107 -6.6824 -6.65511 -6.60911 -6.58551 -6.54557 -6.51723 -6.503 -6.46382 -6.44574 -6.39763 -6.38649 -6.34661 -6.33092 -6.29201 -6.27877 -6.2389 -6.22502 -6.20754 -6.17015 -6.15153 -6.11958 -6.10592 -6.06368 -6.05479 -6.023 -6.00659 -5.99346 -5.96016 -5.94925 -5.9124 -5.90166 -5.87321 -5.85589 -5.82928 -5.82597 -5.7912 -5.77671 -5.76612 -5.73985 -5.731 -5.71439 -5.70532 -5.67559 -5.66804 -5.6418 -5.63944 -5.63151 -5.61857 -5.60494 -5.58464 -5.58045 -5.55205 -5.54998 -5.52862 -5.52516 -5.50865 -5.50969];
Please can someone assist

Accepted Answer

Torsten
Torsten on 8 May 2018
Edited: Torsten on 8 May 2018
x = [ ... ];
y = [ ... ];
x = x.';
y = y.';
n = 5; % degree of polynomial p ; n must be odd
A = [];
for i = 1:2:n
A = [A x.^i];
end
coeff = A\y % Polynomial is given by p(z)=coeff(1)*z + coeff(2)*z^3 + ... + coeff((n+1)/2)*z^n
Best wishes
Torsten.
  2 Comments
Guillaume
Guillaume on 8 May 2018
You can construct A more simply:
A = x(:) .^ (1:2:n); %R2016b or later
A = bsxfun(@power, x(:), 1:2:n); %pre-R2016b
Rik
Rik on 8 May 2018
Wow, I was really overdoing it with my answer.

Sign in to comment.

More Answers (1)

Rik
Rik on 8 May 2018
%set initial estimate
intial_b_vals=[1 5];
x = rand(10,1);%x-values
yx = rand(10,1);%measured y(x)
%create function (must support vector input)
a=(1:(2*length(intial_b_vals)-1));
a(2,1==mod(a,2))=1:length(intial_b_vals);
str=sprintf('b(%d)*x.^%d+',a([2 1],:));
str=strrep(str,'b(0)','0');
str(end)='';
fun=eval(['@(b,x) ' str]);
%set options and perform actual fit
%Ordinary Least Squares cost function
OLS = @(b) sum((y(b,x) - yx).^2);
opts = optimset('MaxFunEvals',50000, 'MaxIter',10000);
%Use 'fminsearch' to minimise the 'OLS' function
fit_output = fminsearch(OLS, intial_b_vals, opts);

Categories

Find more on MATLAB in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!