Solve double integral using 'integral2'

30 views (last 30 days)
Suppose I have this surface integral:
I use integral2 to solve the double integral but the result has complex number in it
My codes are:
syms x y z
format rat
x=sqrt(1-y.^2-z.^2)
xy=diff(x,y)
xz=diff(x,z)
dS = sqrt(100 + xy.^2 + xz.^2)
fun1 = subs((x+y+z).*dS)
f = matlabFunction(fun1)
Myz = integral2(f,0,10,0,@(y)sqrt(100-y.^2))
And the answer
f =
@(y,z)(y+z+sqrt(-y.^2-z.^2+1.0)).*sqrt(-y.^2./(y.^2+z.^2-1.0)-z.^2./(y.^2+z.^2-1.0)+1.0e2)
Warning: Reached the maximum number of function evaluations (10000). The result fails the global error test.
> In integral2Calc>integral2t (line 129)
In integral2Calc (line 9)
In integral2 (line 106)
In Untitled3 (line 18)
Myz =
139388/21 +97492/19i
What's the problem guys ? Thank you

Accepted Answer

Torsten
Torsten on 17 May 2018
Edited: Torsten on 17 May 2018
y = sqrt(100-x^2-z^2) or y = -sqrt(100-x^2-z^2)
->
I = integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x+sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx +
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x-sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx =
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} 2*(x+z)*10/sqrt(100-x^2-z^2) dz dx
In MATLAB:
I = integral2(@(x,z)2*(x+z)*10./sqrt(100-x.^2-z.^2),0,10,0,@(x)sqrt(100-x.^2))
Best wishes
Torsten.

More Answers (0)

Categories

Find more on MATLAB in Help Center and File Exchange

Tags

Products


Release

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!